
SATViz:

Real-Time Visualization of Clausal Proofs

Tim Holzenkamp, Johann Zuber

August 1st 2022

Karlsruhe Institute of Technology: KIT

1



Introduction



SATViz

Figure 1: visualization of Newton.5.1.i.smt2-cvc solved by Kissat

2



Project Context

• Semester project built by students

• No prior background in SAT research

• Idea, requirements and guidance came from our supervisors

3



Motivation

• Visualize Conflict-Driven Clause Learning to

• Understand the structure of SAT instances

• Analyze the behavior of CDCL-solvers

• Extensible framework for processing clauses

• Interactive user interface

• Real-time changes

• Support for standard formats

4



System Architecture



Architecture Overview

Figure 2: Overview of satviz Architecture

5



Algorithms



Visualization

• Undirected graph; 1 node ↔ n variables

• 2 components to calculate edge weights and node colors:

• Variable Interaction Graph

(clique-expansion of CNF-hypergraph)

• Heatmap (relative frequencies of variables)

• Original plans not entirely practical

• Performance: clique embedding ⇒ ring embedding

• Visual gain: frequency-heat ⇒ recency-heat

6



Variable Interaction Graph

(a) clique embedding (b) ring embedding

7



Heatmap

(a) frequency-based heatmap (b) recency-based heatmap

8



Graph Contraction

• Many SAT instances are big (> 50.000 variables)

• Performance struggles

• Graph becomes unintelligible

→ Reduce the graph

• Simple, experimental algorithm

9



Our contraction algorithm

Our original algorithm:

• For each node, find strongest incident edge

• Collapse all found edges ∗

• Repeat N times

Improvement:

• ∗ Only collapse strongest 30%

10



Graph Contraction

(a) 0 iterations (no contraction) (b) 2 iterations

Contraction succeeded in preserving overall structure

11



Features



Features

• A lot of configuration options

• Video recording settings

• Visualization algorithm parameters

• Contraction iterations

• Embedded/external clause source

• ...

• Many options also configurable at runtime

12



Features

• Multiple user interfaces: GUI or CLI

• GUI offers interactivity and approachable settings

• CLI is useful for power users, scripting

• Clause producer and visualisation can be run separately, across

different machines

• Support for:

• IPASIR shared libraries

• DRAT proofs

• DIMACS CNF instances

• xz compression

• Theora (.ogv) videos

12



Conclusion



Future Work

• Incremental graph layout algorithm (out of scope)

• Support for variable equivalence classes

• A producer implementation for distributed solving

• Refined graph contraction algorithm

• Different-sized nodes based on impact of contraction

• Improved CLI (support all parameters)

• Bug fixes

13



Getting your hands on SATViz

The project is open source (MIT License) and can be found at

https://github.com/satviz

• Installation instructions in README.md

• Code base: mostly Java; Graphics and graph model in C++

System requirements:

• GNU/Linux on PC hardware

• Support for OpenGL 3.3 or newer

• Decent hardware (especially CPU, memory)

14

https://github.com/satviz


Thank you for your attention!

Any questions?


