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Introduction



SATViz

Figure 1: visualization of NEWTON.5.1.1.SMT2-CVC solved by KISSAT



Project Context

e Semester project built by students
e No prior background in SAT research

e |dea, requirements and guidance came from our supervisors



Visualize Conflict-Driven Clause Learning to

e Understand the structure of SAT instances

e Analyze the behavior of CDCL-solvers

Extensible framework for processing clauses

Interactive user interface

Real-time changes

Support for standard formats



System Architecture



Architecture Overview
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Figure 2: Overview of satviz Architecture



Algorithms



Visualization

e Undirected graph; 1 node <> n variables
e 2 components to calculate edge weights and node colors:

e Variable Interaction Graph
(clique-expansion of CNF-hypergraph)

e Heatmap (relative frequencies of variables)

Original plans not entirely practical

Performance: clique embedding = ring embedding

Visual gain: frequency-heat = recency-heat



Variable Interaction Graph

(a) clique embedding (b) ring embedding



Heatmap

(a) frequency-based heatmap (b) recency-based heatmap



Graph Contraction

e Many SAT instances are big (> 50.000 variables)
e Performance struggles
e Graph becomes unintelligible
— Reduce the graph

e Simple, experimental algorithm



Our contraction algorithm

Our original algorithm:
e For each node, find strongest incident edge
e Collapse all found edges *
e Repeat N times

Improvement:

e * Only collapse strongest 30%
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Graph Contraction

(a) 0 iterations (no contraction) (b) 2 iterations

Contraction succeeded in preserving overall structure
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Features



Features

e A lot of configuration options
e Video recording settings
e Visualization algorithm parameters
e Contraction iterations
e Embedded/external clause source

e Many options also configurable at runtime

12



Features

e Multiple user interfaces: GUI or CLI
e GUI offers interactivity and approachable settings

e CLI is useful for power users, scripting

e Clause producer and visualisation can be run separately, across
different machines

e Support for:
e IPASIR shared libraries
e DRAT proofs
e DIMACS CNF instances

® Xz compression

Theora (.ogv) videos
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Conclusion



Incremental graph layout algorithm (out of scope)

Support for variable equivalence classes

A producer implementation for distributed solving

Refined graph contraction algorithm

e Different-sized nodes based on impact of contraction

Improved CLI (support all parameters)

Bug fixes
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Getting your hands on SATViz

The project is open source (MIT License) and can be found at
https://github.com/satviz

e Installation instructions in README . md

e Code base: mostly Java; Graphics and graph model in C++
System requirements:

e GNU/Linux on PC hardware

e Support for OpenGL 3.3 or newer

e Decent hardware (especially CPU, memory)
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https://github.com/satviz

Thank you for your attention!

Any questions?



