SATViz:
Real-Time Visualization of Clausal Proofs

Tim Holzenkamp, Johann Zuber
August 1t 2022

Karlsruhe Institute of Technology: KIT



Introduction



SATViz

Figure 1: visualization of NEWTON.5.1.1.SMT2-CVC solved by KISSAT



Project Context

e Semester project built by students
e No prior background in SAT research

e |dea, requirements and guidance came from our supervisors



Visualize Conflict-Driven Clause Learning to

e Understand the structure of SAT instances

e Analyze the behavior of CDCL-solvers

Extensible framework for processing clauses

Interactive user interface

Real-time changes

Support for standard formats



System Architecture



Architecture Overview

Clauses
Producer fr-------- »| Consumer

A{}& z{}x Visualization
DRAT

IPASIR

Solver Proof
+

DIMACS

Instance

ll: Video
Export

Figure 2: Overview of satviz Architecture



Algorithms



Visualization

e Undirected graph; 1 node <> n variables
e 2 components to calculate edge weights and node colors:

e Variable Interaction Graph
(clique-expansion of CNF-hypergraph)

e Heatmap (relative frequencies of variables)

Original plans not entirely practical

Performance: clique embedding = ring embedding

Visual gain: frequency-heat = recency-heat



Variable Interaction Graph

(a) clique embedding (b) ring embedding



Heatmap

(a) frequency-based heatmap (b) recency-based heatmap



Graph Contraction

e Many SAT instances are big (> 50.000 variables)
e Performance struggles
e Graph becomes unintelligible
— Reduce the graph

e Simple, experimental algorithm



Our contraction algorithm

Our original algorithm:
e For each node, find strongest incident edge
e Collapse all found edges *
e Repeat N times

Improvement:

e * Only collapse strongest 30%

10



Graph Contraction

(a) 0 iterations (no contraction) (b) 2 iterations

Contraction succeeded in preserving overall structure

11



Features



Features

e A lot of configuration options
e Video recording settings
e Visualization algorithm parameters
e Contraction iterations
e Embedded/external clause source

e Many options also configurable at runtime

12



Features

e Multiple user interfaces: GUI or CLI
e GUI offers interactivity and approachable settings

e CLI is useful for power users, scripting

e Clause producer and visualisation can be run separately, across
different machines

e Support for:
e IPASIR shared libraries
e DRAT proofs
e DIMACS CNF instances

® Xz compression

Theora (.ogv) videos

12



Conclusion



Incremental graph layout algorithm (out of scope)

Support for variable equivalence classes

A producer implementation for distributed solving

Refined graph contraction algorithm

e Different-sized nodes based on impact of contraction

Improved CLI (support all parameters)

Bug fixes

13



Getting your hands on SATViz

The project is open source (MIT License) and can be found at
https://github.com/satviz

e Installation instructions in README . md

e Code base: mostly Java; Graphics and graph model in C++
System requirements:

e GNU/Linux on PC hardware

e Support for OpenGL 3.3 or newer

e Decent hardware (especially CPU, memory)

14


https://github.com/satviz

Thank you for your attention!

Any questions?



