
Learned Clause Minimization in Parallel

SAT Solvers

Pragmatics of SAT 2019

Marc Hartung, Florian Schintke

POS‘19 1

1. Background

2. Parallel Clause Minimization

3. Experiments

4. Conclusion

AP1 2

Background

POS‘19 3

(Learned) Clause Minimization in SC18

Solver Author CM/
LMC

MapleLCMDistChron
oBT

Ryvchin et al. ✔

Maple_LCM_Scavel_
fix2

Xu et al. ✔

Maple_CM Luo et al. ✔
cms55-main-
all4fixed

M. Soos ✔

Maple_CM_ordUIP Luo et al. ✔
Maple_CM_Dist Luo et al. ✔
cms55-main-
all4fixed

M. Soos ✔

Maple_CM_ordUIP+ Luo et al. ✔
Maple_LCM_Scavel_
200_fix2

Xu et al. ✔

cms55-main-
all4fixed

M. Soos ✔

Solver Author
CM/
LMC

painless Le Frioux et al. ✘

plingeling A. Biere ✘

abcdsat J. Chen ✔
cms55-parallel, 12
core

M. Soos ✔

cbpenelope T. Sonobe ✘

ccspenelope T. Sonobe ✘

syrup, 24 threads
Audemard et

al. ✔

penelope_MDLC
Konan

Tchinda et al. ✘

treengeling A. Biere ✘

scalope
Konan

Tchinda et al. ✘

Top10 Main Track Top10 Parallel Track

Success was

not transferred

to parallel

POS‘19 4

• Clause Minimization using Distillation[1] / Vivification[2]

• Applied at decision level zero

• In this presentation: Minimization ≡ Distillation/Vivification

(Learned) Clause Minimization (LCM)

Iteratively propagate negations

Case 1:

• 𝑙𝑗 propagated to true

• 𝐶 replaced by

𝑙1 ∨ 𝑙2 ∨ ... ∨ 𝑙𝑖 ∨ 𝑙𝑗

Case 2:

• 𝑙𝑖 propagated to false

• 𝑙𝑖 removed from 𝐶

Case 3:

• Conflict detected

• 𝐶 replaced by

𝑙1 ∨ 𝑙2 ∨ ... ∨ 𝑙𝑖

After propagating ¬𝑙1,¬𝑙2,...,¬𝑙𝑖:

Clause 𝐶 = 𝑙1 ∨ 𝑙2 ∨ ... ∨ 𝑙𝑖 ∨ ... ∨ 𝑙𝑗 ∨ ...

POS‘19 5

Only apply CM to (in future) kept learned clauses

• Each clause minimized only once

• Reduction heuristic specifies which are kept

• Reduction example Glucose:

• Minimization triggered after a restart or decision tree is stashed

LMC Approach [3]

Sorted clause list

↓LBD, ↑activity ↑ LBD, ↓ activity

1 n n/2

• low LBD, higher activity

→ keep and minimize
• high LBD, lower activity

→ remove

AP1 6

Parallel Clause Minimization

POS‘19 7

Heterogeneous minimization approach

Dedicate individual threads to minimization

• Examples:

• CDCL solvers + One minimization thread [4][5]

• Only part of solvers use minimization [6]

• Problems:

• Not trivial for many cores

• Introduces load balancing problem

• Adds more magic parameters

• Finding good parameters expensive

→ Discarded for future work

Heterogeneous vs. Homogenous

POS‘19 8

Homogenous minimization approach

• All solvers use same minimization approach

• Example: Minimize export clauses [7]

• Problems:

• Balance minimization and BCP

• How and if minimizations should be shared

Heterogeneous vs. Homogenous

POS‘19 9

PCM – Private Clause Minimization

• Directly apply LCM approach

• Export and CM are independent

• No intentional sharing of minimizations

• Using lazy export policy:

Minimized clauses might be shared

• LBD (≤ 5) cut

• Original version (no LBD cut) decreased performance

• Lazy export policy (two times used)

Implementation:

POS‘19 10

LPCM – Linked Private Clause Minimization

• Shared clauses are linked

• Minimizations shared via link

• LBD (≤ 5) cut

• Clause header contains pointer to memory chunk

• If minimized, chunk contains new clause

Implementation:

POS‘19 11

ECM – Export Clause Minimization

• Enforce minimization before export

• Already used in TopoSAT2[7]

• Lazy export policy (two times used)

• LBD (≤ 3 or ≤ 4) and length (≤ 30) cut

• Marked clauses are protected during reduction

Implementation:

AP1 12

Experiments

POS‘19 13

• SAT competition ‘16 application track, ’17 and ‘ 18 main track

• On Intel Xeon Phi 7250, 68 cores at 1.4 GHz with 96 GB RAM

• Maximum walltime of 15000 seconds

• Maximal 34 threads per solver

• Restrictions due to CPU frequency, cache and main memory

Test Set and Environment

 SAT

UNSAT

POS‘19 14

Vivification Overhead

Propagation Overhead:

 (L)PCM ≈ 10%

 ECM3 ≈ 1%

 ECM4 ≈ 4%

 on average

Minimization success

correlates with overhead:

 (L)PCM ≈ 40%

 ECM3 ≈ 6%

 ECM4 ≈ 32%

 on average

POS‘19 15

Syrup Runtime SAT

PCM increases SAT

performance

Improvement to Syrup

small for easy instances

Solved instances:

 Syrup: 333

 PCM: 343

 LPCM: 331

 ECM3: 326

 ECM4: 302

POS‘19 16

Syrup Runtime UNSAT

• ECM increases overall

UNSAT performance

Solved instances:

 Syrup: 347

 PCM: 355

 LPCM: 355

 ECM3: 367

 ECM4: 321

• PCM, LPCM and ECM3

improve performance

POS‘19 17

TopoSAT2 – ECM

• Glucose 3.0 based ECM solver

• Direct clause export

• Copies of clauses are minimized and exported

→ Minimizations are not used by minimizing solver

Sticky – LPCM, ECM

• Glucose 4.0 based solver with physical clause sharing

• No copy-sharing of clauses, only references are shared

• Adapted lazy clause sharing heuristic

Parallel CM Solver

POS‘19 18

Results SC’16 (application track), SC’17, SC’18 (main track)

• TopoSAT2-ECM3 decrease:

• No lazy export  missing activity filter for export
  higher overhead

• Minimizations not inserted in minimizing solver

SAT Competition Results

• Overall increase through nearly every

CM approach

• Syrup-PCM nearly closed gap to

Toposat2

• LPCM and ECM3 decrease SAT but

increase solved UNSAT instances

more

POS‘19 19

Single Competition Results

SAT Competition Results

Syrup-ECM3 wins on

SC’16 application track

benchmarks

Syrup-PCM wins on

SC’18 application track

benchmarks

No real improvement

on SC’17 benchmarks

POS‘19 20

• Homogeneous CM applicable for parallel solvers

→ Approaches solved 6 – 21 additional instances

• Sharing minimizations via link has no advantage

→ LPCM fewer solved instances than PCM

• More restrictive clause selection than in serial

→ ECM4 and TopoSAT2-ECM slow down

→ PCM/LPCM only succeed with LBD cut

• Prioritize:

• Activity-based selection for SAT (PCM)

• LBD-based selection for UNSAT (ECM)

Conclusion

POS‘19 21

[1] Hyojung Han and Fabio Somenzi. Alembic: An ecient algorithm for CNF preprocessing, in

DAC’07

[2] Cdric Piette, Youssef Hamadi, and Lakhdar Sais. Vivifying propositional clausal formulae, in

ECAI'08

[3] Mao Luo, Chu-Min Li, Fan Xiao, Felip Many, and Zhipeng L. An effective learnt clause

minimization approach for CDCL SAT solvers, in IJCAI‘17

[4] Siert Wieringa and Keijo Heljanko. Concurrent clause strengthening, in SAT’13

[5] Michael Kaufmann, Stephan Kottler, Michael Kaufmann, and Stephan Kottler. SArTagnan –

a parallel portfolio SAT solver with lockless physical clause sharing, in POS’11

[6] Gilles Audemard and Laurent Simon. Glucose and Syrup: Nine years in the SAT

competitions, in Proceedings of SAT Competition 2018

[7] Thorsten Ehlers and Dirk Nowotka. Glucose hacks and TOPOSAT2 description, in

Proceedings of SAT Competition 2018

References

POS‘19 22

 Questions?

Marc Hartung

Parallel and Distributed Computing

Zuse Institute Berlin (ZIB)

hartung@zib.de

