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Background 
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(Learned) Clause Minimization in SC18 

Solver Author CM/ 
LMC 

MapleLCMDistChron
oBT 

Ryvchin et al. ✔ 

Maple_LCM_Scavel_
fix2 

Xu et al. ✔ 

Maple_CM Luo et al. ✔ 
cms55-main-
all4fixed 

M. Soos ✔ 

Maple_CM_ordUIP Luo et al. ✔ 
Maple_CM_Dist Luo et al. ✔ 
cms55-main-
all4fixed 

M. Soos ✔ 

Maple_CM_ordUIP+ Luo et al. ✔ 
Maple_LCM_Scavel_
200_fix2 

Xu et al. ✔ 

cms55-main-
all4fixed 

M. Soos ✔ 

Solver Author 
CM/ 
LMC 

painless Le Frioux et al.  ✘ 

plingeling A. Biere ✘ 

abcdsat J. Chen ✔ 
cms55-parallel, 12 
core 

M. Soos ✔ 

cbpenelope T. Sonobe ✘ 

ccspenelope T. Sonobe ✘ 

syrup, 24 threads 
Audemard et 

al. ✔ 

penelope_MDLC 
Konan 

Tchinda et al. ✘ 

treengeling A. Biere ✘ 

scalope 
Konan 

Tchinda et al. ✘ 

Top10 Main Track Top10 Parallel Track 

Success was 

not transferred 

to parallel 
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• Clause Minimization using Distillation[1] / Vivification[2] 

• Applied at decision level zero 

 

 

 

 

 

 

 

• In this presentation: Minimization ≡ Distillation/Vivification 

 

 

 

 

(Learned) Clause Minimization (LCM) 

Iteratively propagate negations 

Case 1: 

• 𝑙𝑗 propagated to true 

• 𝐶 replaced by          

𝑙1 ∨ 𝑙2 ∨ ... ∨ 𝑙𝑖 ∨ 𝑙𝑗 

Case 2: 

• 𝑙𝑖 propagated to false 

• 𝑙𝑖 removed from 𝐶 

Case 3: 

• Conflict detected 

• 𝐶 replaced by          

𝑙1 ∨ 𝑙2 ∨ ... ∨ 𝑙𝑖 

After propagating ¬𝑙1,¬𝑙2,...,¬𝑙𝑖:  

Clause 𝐶 = 𝑙1 ∨ 𝑙2 ∨ ... ∨ 𝑙𝑖 ∨ ... ∨ 𝑙𝑗 ∨ ... 
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Only apply CM to (in future) kept learned clauses  

• Each clause minimized only once 

• Reduction heuristic specifies which are kept 

• Reduction example Glucose: 

 

 

 

 

• Minimization triggered after a restart or decision tree is stashed 

LMC Approach [3] 

Sorted clause list 

↓LBD, ↑activity ↑ LBD, ↓ activity 

1 n n/2 

• low LBD, higher activity 

→ keep and minimize 
• high LBD, lower activity 

→ remove 
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Parallel Clause Minimization 
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Heterogeneous minimization approach 

Dedicate individual threads to minimization 

• Examples: 

• CDCL solvers + One minimization thread [4][5] 

• Only part of solvers use minimization [6] 

• Problems: 

• Not trivial for many cores 

• Introduces load balancing problem 

• Adds more magic parameters 

• Finding good parameters expensive 

→ Discarded for future work 

Heterogeneous vs. Homogenous 
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Homogenous minimization approach 

 

• All solvers use same minimization approach 

• Example: Minimize export clauses [7] 

• Problems: 

• Balance minimization and BCP 

• How and if minimizations should be shared 

 

 

 

 

Heterogeneous vs. Homogenous 
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PCM – Private Clause Minimization 

• Directly apply LCM approach 

• Export and CM are independent 

• No intentional sharing of minimizations 

• Using lazy export policy:       

Minimized clauses might be shared 

• LBD (≤ 5) cut  

• Original version (no LBD cut) decreased performance 

• Lazy export policy (two times used) 

Implementation: 
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LPCM – Linked Private Clause Minimization 

• Shared clauses are linked 

• Minimizations shared via link 

• LBD (≤ 5) cut  

• Clause header contains pointer to memory chunk 

• If minimized, chunk contains new clause 

Implementation: 
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ECM – Export Clause Minimization 

• Enforce minimization before export 

• Already used in TopoSAT2[7] 

• Lazy export policy (two times used)  

• LBD (≤ 3 or ≤ 4) and length (≤ 30) cut  

• Marked clauses are protected during reduction 

Implementation: 
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Experiments 
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• SAT competition ‘16 application track, ’17 and ‘ 18 main track 

• On Intel Xeon Phi 7250, 68 cores at 1.4 GHz with 96 GB RAM 

 

• Maximum walltime of 15000 seconds 

• Maximal 34 threads per solver 

• Restrictions due to CPU frequency, cache and main memory  

 

 

 

Test Set and Environment 



 

 

  SAT 

 

 

 

 

UNSAT 
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Vivification Overhead 

Propagation Overhead: 

       (L)PCM ≈ 10% 

       ECM3 ≈ 1% 

       ECM4 ≈ 4% 

       on average 

Minimization success 

correlates with overhead: 

       (L)PCM ≈ 40% 

       ECM3 ≈ 6% 

       ECM4 ≈ 32% 

       on average 
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Syrup Runtime SAT  

PCM increases SAT 

performance 

 

Improvement to Syrup 

small for easy instances 

Solved instances: 

      Syrup: 333 

      PCM:     343 

      LPCM: 331 

      ECM3: 326 

      ECM4: 302 
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Syrup Runtime UNSAT  

• ECM increases overall 

UNSAT performance 

Solved instances: 

      Syrup: 347 

      PCM:     355 

      LPCM: 355 

      ECM3: 367 

      ECM4: 321 

• PCM, LPCM and ECM3 

improve performance 



POS‘19 17 

TopoSAT2 – ECM 

• Glucose 3.0 based ECM solver 

• Direct clause export 

• Copies of clauses are minimized and exported 

→ Minimizations are not used by minimizing solver 

Sticky – LPCM, ECM 

• Glucose 4.0 based solver with physical clause sharing 

• No copy-sharing of clauses, only references are shared 

• Adapted lazy clause sharing heuristic 

Parallel CM Solver 
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Results SC’16 (application track), SC’17, SC’18 (main track) 

 

 

 

 

 

 

• TopoSAT2-ECM3 decrease: 

• No lazy export  missing activity filter for export                                        
                higher overhead 

• Minimizations not inserted in minimizing solver 

SAT Competition Results 

• Overall increase through nearly every 

CM approach 

• Syrup-PCM nearly closed gap to 

Toposat2 

• LPCM and ECM3 decrease SAT but 

increase solved UNSAT instances 

more 
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Single Competition Results 

SAT Competition Results 

Syrup-ECM3 wins on 

SC’16 application track 

benchmarks 

Syrup-PCM wins on 

SC’18 application track 

benchmarks 

No real improvement 

on SC’17 benchmarks 
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• Homogeneous CM applicable for parallel solvers 

→ Approaches solved 6 – 21 additional instances 

• Sharing minimizations via link has no advantage 

→ LPCM fewer solved instances than PCM 

• More restrictive clause selection than in serial 

→ ECM4 and TopoSAT2-ECM slow down 

→ PCM/LPCM only succeed with LBD cut 

• Prioritize:  

•  Activity-based selection for SAT (PCM) 

• LBD-based selection for UNSAT (ECM) 

 

Conclusion 
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