TECHNISCHE
=m0 x H -
EEPotassco (L) ibesina 5 [l dbai

gpusat2 — An Improved GPU Model Counter

Johannes K. Fichte! = Markus Hecher?3 Markus Zisser?

11y Dresden, Germany
2Ty Wien, Austria
3University of Potsdam, Germany

Pragmatics of SAT (POS) Workshop 20109,
Lisbon, Portugal

July 8, 2019

/28

Motivation

Model Counting (#SAT)
= Generalizes Boolean satisfiability problem (SAT)
= #SAT: output the number of satisfying assignments

= WMC: output the weighted model count
= Various applications in Al and reasoning, e.g.,

= Bayesian reasoning [Sang et al.05]
= Learning preference distributions [Choi et al.'15]
= Infrastructure reliability [Meel et al.17]

= Computational complexity: #P-hard [Roth'96]

Motivation: A somewhat different approach.

#SAT /WMC Solving

= There are already plenty solvers based on various techniques:
approximate (Meel) / CDCL (Baccus/Thurley) /
knowledge compilation based (Darwiche et al.)

Parameterized Algorithms

= Lots of theoretical work over last 20 years and various algorithms for #SAT

Motivation: A somewhat different approach.

#SAT /WMC Solving

= There are already plenty solvers based on various techniques:
approximate (Meel) / CDCL (Baccus/Thurley) /
knowledge compilation based (Darwiche et al.)

Parameterized Algorithms

= Lots of theoretical work over last 20 years and various algorithms for #SAT

Research Question

Are (theoretical) algorithms from parameterized complexity even useful for
implementations in #SAT/WMC solving?

Parameterized Algorithmics

Topic of the Talk

Solve #SAT /WMC by means of an implementation of a parameterized
algorithm that explicitly exploits small treewidth.

Parameterized Algorithmics

Topic of the Talk

Solve #SAT /WMC by means of an implementation of a parameterized
algorithm that explicitly exploits small treewidth.

Presentation:
1. ldeas towards a GPU model counter [FHWoltranZ'18]
2. Improved Architecture for #SAT (POS paper [FHZ'19])

Parameterized Algorithmics

Topic of the Talk

Solve #SAT /WMC by means of an implementation of a parameterized
algorithm that explicitly exploits small treewidth.

Presentation:
1. ldeas towards a GPU model counter [FHWoltranZ'18]
2. Improved Architecture for #SAT (POS paper [FHZ'19])

Purpose:

There are other architectures out there and it might fit for certain algorithms.

NOT: outperforming everything else.

Tree Decompositions

Treewidth

= Most prominent graph invariant

= Small treewidth indicates tree-likeness and sparsity

= Can be used to solve #SAT/WMC by defining graph
representations of the input formula

/28

Tree Decompositions

Treewidth

= Treewidth defined in terms of tree decompositions (TD)

= TD: arrangement of graph into a tree + bags s.t. ...

/28

Tree Decompositions

G: x T:1b
5 c b, c
y [b, X, c]
b b, x, a
———
width
Treewidth

= Treewidth defined in terms of tree decompositions (TD)
= TD: arrangement of graph into a tree + bags s.t. ...
= Treewidth: width of a TD of smallest width

Tree Decompositions

Tree Decomposition T of G
G: x

Definition

A tree decomposition is a tree obtained from an arbitrary graph s.t.
1. Each vertex must occur in some bag
2. For each edge, there is a bag containing both endpoints
3. Connected: If vertex v appears in bags of nodes t; and t;, then v is also in the
bag of each node on the path between ty and t;

Part:

Outline (Basic Architecture)

(1. Build graph G of FJ

[2. Create TD 7 of G

[4. Output count]

6

Outline (Basic Architecture)

(1. Build graph G of FJ

] i

[2. Create TD 7 of G

[4. Output count]

Part:
A) Background & Basic Concepts
Treewidth, Graph Representation (1) + Dynamic Programming (3) [Samer & Szeider JDA'10]

6/2

Outline (Basic Architecture)

(1. Build graph G of FJ

l

[2. Create TD 7 of G

[4. Output count]

Part:
A) Background & Basic Concepts
Treewidth, Graph Representation (1) + Dynamic Programming (3) [Samer & Szeider JDA'10]
B) Finding TDs (2)

6/2

Outline (Basic Architecture)

(1. Build graph G of FJ

] i

[2. Create TD 7 of G

[4. Output count]

Part:
A) Background & Basic Concepts
Treewidth, Graph Representation (1) + Dynamic Programming (3) [Samer & Szeider JDA'10]
B) Finding TDs (2)
C) Dynamic Programming (3) on the GPU

6/2

How to “use” tree decompositions for #SAT /WMC?

/28

Solving #SAT [SamerSzeider10]
@ =(maVbVx)A(aVb)A(cV-x)A(bV-c)A (=bV-cV-y)

MOd((p) = { {b}’{a’ b}v{b’ C}’{aa b, C}7
{b, ¢, x},{a, b, c, x},

{b,y}.{a, b,y}}

Solving #SAT [SamerSzeider10]
e =(maVvVbVx)A(avb)A(cV-x)A(bV-c)A (—=bV-cV-y)

1. Create graph representation

28

Solving #SAT [SamerSzeider10]
@ =(maVbVx)A(aVb)A(cV-x)A(bV=c)A (—=bV-cVy)

1. Create graph representation
2. Decompose graph

Solving #SAT [SamerSzeider10]
@ =(maVbVx)A(aVb)A(cV-x)A(bV-c)A (—=bV-cVy)

1. Create graph representation

2. Decompose graph
3. Solve problems via §

“Local formula” F; clauses whose
variables are contained in the bag
(colored in red above)

Solving #SAT [SamerSzeider10]
@ =(maVbVx)A(aVb)A(cV-x)A(bV=c)A (—=bV-cVy)

1. Create graph representation
2. Decompose graph
3. Solve problems via S

S
x
o

o
=

= =)
—

o=~ =

@
(op
X
-)
@
o
D
<

O =
== = O O X
— — O Ol

[

Solving #SAT [SamerSzeider10]
@ =(maVbVx)A(aVb)A(cV-x)A(bV=c)A (=bV-cVy)

1. Create graph representation

2. Decompose graph
3. Solve problems via S

o
(o}

ol — —
| =)
o

o
=

= =

E—
= =)

Solving #SAT [SamerSzeider10]
@ =(maVbVx)A(aVb)A(cV-x)A(bV-c)A (—=bV-cVy)

1. Create graph representation

2. Decompose graph
3. Solve problems via S

Solving #SAT [SamerSzeider10]
@ =(maVbVx)A(aVb)A(cV-x)A(bV=c)A (=bV-cVy)

1. Create graph representation

2. Decompose graph
3. Solve problems via S

Solving #SAT [SamerSzeider10]

(mravbVx)A(avb)A(cV—x)A(bV-c)A(=bV-cV-y)

()0 —=
1. Create graph representation b 7
2. Decompose graph } 0
3. Solve problems via S !
b c b ¢
T 0 00
1 1 1 0
11

Solving #SAT [SamerSzeider10]
@ =(maVbVx)A(aVb)A(cV-x)A(bV-c)A (=bV-cV-y)

1. Create graph representation G

2. Decompose graph Lo
3. Solve problems via S - / R
c
1 0
1 1
b x ¢
1 00
10 1
11 1
[b7 X, C] [b, C, y] :l:/
b x a
b, x, a 100
10 1
110
11 1
0 1 1

{

Solving #SAT [SamerSzeider10]
@ =(maVbVx)A(aVb)A(cV-x)A(bV-c)A (=bV-cV-y)

. Create graph representation B e

1
2. Decompose graph } (1)
3. Solve problems via S %
. - b ¢
4. Combine solutions 0
1 1
b
T 00
101
111
[b7 X, C] [b, c, y] —
b x a
b, x, a T 00
10 1
110
111
01 1

{

Solving #SAT [SamerSzeider10]
@ =(maVbVx)A(aVb)A(cV-x)A(bV=c)A(=bV-cV-y)

1. Create graph representation b c|#

2. Decompose graph 1 04

3. Solve problems via & . L

4. Combine solutions 11) 8 iﬂ (g g aZﬂ
1 1J 1 oj
br:'—cﬁ 1 1)1

Solving #SAT [SamerSzeider10]
@ =(maVbVx)A(aVb)A(cV-x)A(bV=c)A(=bV-cV-y)

1. Create graph representation b c|#
2. Decompose graph 104
. 1 1|4

3. Solve problems via S 5 =

4. Combine solutions T 8 iﬂ (0 g aZﬂ
1 1|4 1 0|2
b x c? sl
I 002 #
1 0 1]2 |1
11 1]2 1
b x a|# 1
10 0]1] .
10 1)1
11 0]1
11 1)1 Runtime: 2°(%) . poly(|,|)
01 1|1

“Find" tree decompositions of small width?
Works well even for relatively large instances.

Thanks to the Parameterized Algorithms and
Computational Experiments Challenge
(PACE) '16/'17!11

8/28

“Find"” tree decompositions of small width?
Works well even for relatively large instances.

Thanks to the Parameterized Algorithms and
Computational Experiments Challenge
(PACE) '16/'17!11

A GPU-based #SAT /WMC-solver

OR how to go parallel?

8/28

Dynamic Programming on the GPU

How to parallelize DP?

CPU
Multiple Cores

GPU
Thousands of Cores

/28

Dynamic Programming on the GPU

How to parallelize DP?

1. Compute tables for multiple nodes in
parallel

Dynamic Programming on the GPU

How to parallelize DP?

1. Compute tables for multiple nodes in
parallel

= Does not allow for immediate massive

parallelization due to dependencies to
children

Dynamic Programming on the GPU

How to parallelize DP?

1. Compute tables for multiple nodes in
parallel
= Does not allow for immediate massive
parallelization due to dependencies to
children
2. Distribute computation of rows among
different computation units {b

Dynamic Programming on the GPU

How to parallelize DP?

1. Compute tables for multiple nodes in
parallel

= Does not allow for immediate massive

parallelization due to dependencies to
children

2. Distribute computation of rows among

different computation units
= Allows with right hindsight for massive
parallelization

Why: computation of rows are independent

Implementation

Disclaimer for theorists: you need to get your hands dirty
+
Right hindsight

/28

Implementation ldeas

Right hindsight?
1. Data structures: a “pixel” represents F#solutions store data as
a. Array (gpuSAT1); improved in gpuSAT2
b. Compressed partial assignments in BST (gpuSAT?2)
2. Avoid Copying:
Merge small bags (gpuSAT1 < 14, gpuSAT2 hardware dep.)
3. Handle potential VRAM overflow (gpuSAT2):
Split bags and previously computed solutions
(if 2* assignments do not fit into the VRAM)
4. Get counters right

Implementation Ideas (cont.)

(1) Data Structures

a. Array: memory address (plus offset) identifies assignment
= lssue: produces lots of memory cells that contain value 0
b. BST (gpuSAT2):
= Compress Assignments (or address assignments not just by a memory cell)
= Store only where # # 0
= |dea: use BST; simulate this in an array
(implement manually on GPU; no libs)

Implementation ldeas (cont).

(4) Counters:
= WMC: double or double4 (gpuSAT1)
= #SAT

a. run WMC and use uniform factor (gpuSAT1)
b. use logarithmic counters (gpuSAT?2)

= Store floating log-counters
= Numbers stored in relation to exponent 2¢ (largest exponent)
= Dynamically change exponent (keep highest possible precision)

In Practice
= Available on github (GPL3)
= OpenCL: vendor and hardware independent computation framework; C4++11

= Works for two graph types: primal, incidence, dual graph

New Architecture (gpuSAT?2) [FHZ19]

0. Preprocess F' === N
Cache results Apply K to F; for | ![Get next child sol. H
1. Build Gp in VRAM ¢ each element in S | 1| chunks C-Tabs "

I

Visit next node t |1~ g 3Ja. Solution space splitter n
of 7 in post-order 0

3. DP on GPUs \3b. Chunk handler ;'
\

2. Choose TD T |/
|

2b. Preprocess T :

4. Output count

0. Instance Preprocessing
2. Customized Tree Decompositions

New Architecture (gpuSAT?2) [FHZ19]

s g
Cache results Apply K to F; for | ![Get next child sol. H
1. Build Gp in VRAM 4 each element in S | 1| chunks C-Tabs | 1,

I

Tl’lO H

"
|

L T e A g Transfer ¢+ into 7+

|

I and compress T¢

|

I

i
'3. DP on GPUs 13b. Chunk handler | |

2. Choose TD T
2b. Preprocess T
4. Output count

0. Instance Preprocessing
2. Customized Tree Decompositions
(#30; minimize max. card. of intersection of bags at node and its children)

New Architecture (gpuSAT?2) [FHZ19]

**
Cache results Apply K to F; for | ![Get next child sol. H
1. Build Gr in VRAM ¢ each element in S | 1| chunks C-Tabs | 1\
I I
T no ‘:
2. Choose TD T

"
|
4. Output count : 7777777777777777777777777777 Transfer ¢4 into 7¢
I and compress T¢
|
I

i
'3. DP on GPUs 13b. Chunk handler | |

0. Instance Preprocessing
2. Customized Tree Decompositions
3a. Solution Space Splitting
(Split larger solutions into smaller portions = avoid OOM)

New Architecture (gpuSAT?2) [FHZ19]

(e e S

Apply K to F, for ' [Get next child sol.] ¥
I

each element in S | 1 chunks C-Tabs 1
"
]

Visit next node t |1~ g 3Ja. Solution space splitter ¥
of 7 in post-order | :
h

3. DP on GPUs \3b. Chunk handler ;'
\

Cache results
in VRAM ¢

0. Instance Preprocessing
2. Customized Tree Decompositions
3a. Solution Space Splitting
3b. Execute a small GPU-program in a GPU thread (kernel) for each element in S

Compress the data and store it in the VRAM (separate GPU-programs)
After all chunks are processed memory regions are merged

Experimental Work

Instances
= 2585 instances from public benchmarks
= #SAT and WMC

Limits

= Cannot expect to solve instances of high treewidth.

Experiments

1. Distribution of width
2. Benchmarked all solvers that are publicly available

14 /28

#SAT: Width Comparison (Preprocessing comp.)

w/o pre

1250 -

0 B B+E
1000 A pmc

Il pmc, B+E

750 1
500 -
250 A

0 - — — — —

20 20 A0 N XQQ \%0 600 000 oX Mt
- - - - . . . 0 ‘
O T T T e oy AR
= Runtime well below a second (max. 2.5) 0-40; timeout (900s) on 41
= 54% primal treewidth below 30; 70% below 40

= Preprocessing produces TDs of significantly smaller width .

WMC: Width Comparison (w/o Preprocessing)

800 -

600

400 1

200 -

w/o pre
pmc*

0

.20

a0 0 Q0 120 Q0 Q0 QX q:‘)f’.
NN @vxﬂxﬁ@\—@ A0

2\

= Produce decompositions of significantly smaller width

16 /28

Experimental Work (Runtime)

Setting (Runtime Comparision)

Take gpuSAT1, gpuSAT2, and versions as well as sequential and parallel solvers.
Consider Wallclock

Hardware

= non-GPU solving: cluster of 9 nodes; each E5-2650 CPUs(12cores) 2.2 GHz, 256
GB RAM: disabled HT, kernel 4.4

= GPU-solving: i3-3245 3.4 GHz; 16 GB RAM; GPU: Sapphire Pulse ITX Radeon
RX 570 GPU; 1.24 GHz with 32 compute units, 2048 shader units, 4GB VRAM

17/28

Experimental Work (Runtime Disclaimer)

Questionable Setting?

Aren't you comparing apples and oranges? YES.

Problems of the Setting
= We compare on different hardware
= Soon, new cluster node with the same specs and two GPUs
= Wallclock is unfair.
Usually user is interested in getting things done quickly (+ fairly cheap)

= Power consumption (Joule) and price of investment better measure
(BUT not accessible with the current framework)

= We use cheap consumer hardware (200 EUR) for the GPU
not a Tesla K80 (8k EUR) or DGX2 (400k EUR)

= Parallel vs. sequential: No excuse, sorry

HSAT

| solver [020 21-30 31-40 41-50 51-60 >60 best unique | 3 | time[h]
miniC2D 193 29 10 2 17 13 0] 1242 | 68.77

w | gPuSAT2 119 32 1 0 0 0 250 8| 1220 || 7127
G | d4 1163 20 10 2 4 28 52 1| 1227 || 76.86
§ | gpuSAT2(A+B) || 1187 18 1 0 0 0 120 7| 1206 | 74.56
5 | countAntom 12 || 1141 18 10 5 4 13 101 0| 1191 | 84.39
£ | cd 124 31 10 3 3 10 2 0| 1181 | 8441
g2 | sharpSAT 1029 16 10 2 4 30 253 1| 1091 || 106.88
S | gpuSAT1 1020 16 0 0 0 0 106 7| 1036 | 114.86
sdd 1014 4 7 1 0o 2 0 0| 1028 || 124.23

| solver | 020 21-30 31-40 41-50 51-60 >60 best unique | 3 || time[h]
countAntom 12 118 511 139 175 21 181 318 15 || 1145 | 96.64
2d 124 514 148 162 21 168 69 15 || 1137 || 104.94
2| cd 119 525 165 161 18 120 48 15 || 1108 || 110.53
S | miniC2D 122 514 128 149 9 62 0 0| o984 | 141.22
| sharpSAT 100 467 124 156 12 123 390 4 982 | 13541
o | gpuSAT2(A+B) || 125 539 96 138 0o 0 9 19 | 898 || 151.16
3 | gpuSAT2 125 523 96 138 o o 78 17| 882 || 155.43
£ | gpusATL 125 524 67 140 0 0 & 9| 856 | 162.03
cachet 99 430 71 152 8 57 3 0| 817 | 176.26

| solver | 020 21-30 31-40 41-50 51-60 >60 best unique | Y | time[h]

19/28

900

800

700 A

600 1

500 A

400 1

300

200 1

100

#SAT: Runtime Results (w. Preprocessing)

- miniC2D
= gpuSAT2
- d4
gpuSAT2(A+B)
= countAntom 12
- c2d
sharpSAT
- gpusat 1
- sdd

0 7 T T T T
700 800 900 1000 1100 1200

= Techniques pay off after preprocessing

20/28

WMC

| solver | 0-20 21-30 31-40 41-50 51-60 >60 best unique | 3 || time[h]
, | miniC2D 858 164 6 0 0 3 13 8| 1031 || 21.29
2 | gpuSAT1 866 158 0 0 0 0 348 4| 1024 | 18.03
S| gpuSAT2(A+B) | 866 156 0 0 0 o0 343 4 1022 || 17.86
%2 | BpuSAT2 866 138 0 0 0 0 29 4| 1004 | 2243
d4 810 106 0 0 0 0 46 0| 916 | 55.36
cachet 617 128 1 0 0 3 106 1| 749 | 9365
o | d4 82 501 142 156 10 19 111 24 || 910 53.97
S | miniC2D 84 517 134 152 3 4 19 7| 894 | 59.69
S | gpuSAT2(A+B) 86 527 98 138 0 0 167 19| 849 || 64.40
£ | gpuSAT2 86 511 98 138 0 0 131 7| 833 6861
= | gpusAT1 86 513 68 140 0 0 182 10 || 807 | 73.78
cachet 60 447 100 145 2 9 118 1|| 763| 89.80

Summary

Contributions
= Established Architecture for DP on the GPU
= Competitive Implementation for #SAT/WMC solving

Benchmark: Comparing apples and oranges

BUT: you compare parallel and sequential solvers.
1. We run on cheap consumer hardware (200 EUR).
2. Cannot measure speedup due to OpenCL limitations
= migrate to cuda

Summary contd.

Take Home Messages

1. Parameterized Algorithms can actually work
(Preprocessing is key; some techniques pay only off with right preprocessing)
2. Does it work for SAT? = we don’t expect so.

Future Work

= Improve current setup by:
Portfolio solving; Parallel Usage of GPUs; Alternative Frameworks

= Consider whether stable among different GPU hardware

= Parameters (pswidth)

Sponsors: FWF Y698 & P26696; DFG HO 1294/11-1

Summary contd.

Take Home Messages

1. Parameterized Algorithms can actually work
(Preprocessing is key; some techniques pay only off with right preprocessing)
2. Does it work for SAT? = we don’t expect so.

Future Work

= Improve current setup by:
Portfolio solving; Parallel Usage of GPUs; Alternative Frameworks

= Consider whether stable among different GPU hardware

= Parameters (pswidth)

Thanks for listening!

Sponsors: FWF Y698 & P26696; DFG HO 1294/11-1

References

[AMW17]: Abseher, Musliu, Woltran. htd — A Free, Open-Source Framework for
(Customized) Tree Decompositions and Beyond. CPAIOR'17. 2017. doi:
10.1007/978-3-319-59776-8_30

[FHWZ18]: Fichte, Hecher, Woltran, Zisser. Weighted Model Counting on the GPU by
Exploiting Small Treewidth. ESA'18. 2018. doi:
10.4230/LIPlcs.ESA.2018.28

[FHZ19]: Fichte, Hecher, Zisser. gpusat2 — An Improved GPU Model Counter. POS

2019.
[SamerSzeider10]: Samer, Szeider. Algorithms for propositional model counting. JDA.
2010. doi: 10.1016/j.jda.2009.06.002

gpusat is available at: https://github.com/daajoe/gpusat

https://github.com/daajoe/gpusat

Backup Slides

400 600 800

200

Solving (Width: 0-30): #SAT

~ vbest

° gpusat(p)

@ c2d

* d4
countAntom

® miniC2D

A gpusat(i)

+ gpusat(p4)

v sts
sharpSAT

X gpusat(i4)

< Cachet

X dsharp

—| 4 sdd

% dynQBF
dynasp(i)

= cnf2eadt

« approxmc

] & clasp

bdd_minisa

T A~
g .
x 4 ‘f N E
[] f +|’
a o a’,
[} 3A § 'o°
] " 3: § +|-’
; +l'
H " # a 8 858
& ¢ : 8 f-l:u
[] S B g
X] = 2 n
. ’ ; a
P |
x [-] d g
X]
x F] I

kc/cdcl: c2d, d4,
dsharp

dp: gpusat,
dynQBF, dynasp
parallel:
countAntom,
gpusat

cdcl: Cachet,
sharpSAT, clasp
bdd: sdd
approx:
approxmc, sts

25/28

Solving: #SAT

solver || 0-20 21-30 31-40 41-50 51-60 >60 || best | > rank
c2d 164 519 175 116 20 118 120 | 1112 2
Cachet 133 421 91 109 8 58| 13| 820 7
d4 169 510 156 119 23 162 | 191 | 1139 1
gpusat(p)|| 169 523 79 104 0O O 88| 85 6
miniC2D 167 491 137 103 8 67 2| 9713 4
sharpSAT || 136 465 136 112 11 124 | 483 | 984 3
sts 162 448 101 146 10 45| 252 | 912 5

Table: Number of counting instances solved by solver and interval.

26

28

Empirical Work (first approach)

Observations
= |Implementation is fairly naive

= Still: competitive up to width 30
= Requirement: obtain decompositions fast
= Width was surprisingly small (different for SAT)

Implementation Ideas (cont.)

(1) Data Structures
b. BST (details):

= Continuous sequence 64-bit unsigned integers (cells)

= Cell: empty, index, and value (counter)

= index cells: lower 32 bits index to the next cell
(lower bits assingment 0, upper 1)

= Handle Sync (between parallel threads) by keeping track of the current size
(number of allocated cells; prevent to allocate cell again)

Solving #SAT [SamerSzeider10]
@ =(maVbVx)A(aVb)A(cV-x)A(bV-c)A (=bV-cV-y)

1. Create graph representation
2. Decompose graph

[b, X, c] [b, c, y]

“Local formula” F; clauses whose
variables are contained in the bag
(colored in red above)

Nice Tree Decompositions
(note example left is not nice)

LEAF.:
INTR.:

REMOVE:

JOIN:

Put empty set and counter 1

Guess truth value and check
satisfiability

Remove a from each assignment (row)
in the table and sum up the counters
if we get multiple assignments with
the same data

Match rows with the same assignment
and multiply the counters

Algorithm for Primal Graph

[N N =

© 0 N 6 o«

10

In: Node t, bag x:, clauses F;, sequence C' of tables.
Out: Table tab,

if type(t) = leaf then
L tabt <— {@}
else if type(t) = intr and a € x:¢ \ xi/, then
taby < {Tu{a} | 7 € tab”, 7 U {a} |:Ft} u
{7‘ |T€tab”77|:Ft}
else if type(t) =rem and a € x4 \ x+ then
taby < {7’ \ {a} | T € tab” }
else if type(t) = join then
taby < {’7’ | T € tab”, T € tab” }

return tab;

	Introduction
	Outline
	Preliminaries
	Backup

	Bibliography
	Backup Slides

