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« Example 2: cooperative path finding (CPF)
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solvers?

- an example

« Cooperative pathfinding (CPF)
+ N agents on some grid/graph
- Start positions
+ Goal positions
+ Minimize makespan
+ Restricted planning problem

« Concrete example
+ Gaming grid
+ 1039 vertices
+ 1928 edges
+ 100 agents

*%% tracker: a pathfinding tool #%%

Initialization ... CPU Time: 0.004711

Number of variables: 113315

Tentative makespan 1

Number of variables: 226630

Number of assumptions: 1

c Running SAT solver ... CPU Time: 0.718112

c Done running SAT solver ... CPU Time: 0.830099
No solution for makespan 1

Elapsed CPU Time: 0.830112

Tentative makespan 2

Number of variables: 339945

Number of assumptions: 1

¢ Running SAT solver ... CPU Time: 1.27113

c Done running SAT solver ... CPU Time: 1.27114
No solution for makespan 2

Elapsed CPU Time: 1.27114

Tentative makespan 24

Number of variables: 2832875

Number of assumptions: 1

c Running SAT solver ... CPU Time: 11.8653

c Done running SAT solver ... CPU Time: 11.8653
No solution for makespan 24

Elapsed CPU Time: 11.8653

Tentative makespan 25

Number of variables: 2946190

Number of assumptions: 1

¢ Running SAT solver ... CPU Time: 12.3491

c Done running SAT solver ... CPU Time: 16.6882
Solution found for makespan 25

Elapsed CPU Time: 16.6995
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« Cooperative pathfinding (CPF)

N agents on some grid/graph

Start positions

Goal positions

Minimize makespan
Restricted planning problem

« Concrete example

Gaming grid
1039 vertices
1928 edges
100 agents

Formula w/ 2946190 variables!
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solvers? — an example

« Cooperative pathfinding (CPF)

N agents on some grid/graph

Start positions

Goal positions

Minimize makespan
Restricted planning problem

« Concrete example

- Note: In the early 90s, SAT solvers could solve
formulas with a few hundred variables!
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Grasping the search space ...

« Number of seconds since the Big Bang: ~ 10'7
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Grasping the search space ...

« Number of seconds since the Big Bang: ~ 10'7

« Number of fundamental particles in observable universe: ~ 10" (or
~ 108°)

- Search space with 15775 propositional variables (worst case):

- # of assighments to 15775 variables: > 10478 1
+ Obs: SAT solvers in the late 90s (but formula dependent)

- Search space with 2832875 propositional variables (worst case):

- # of assighments to > 2.8 x 10° variables: > 10840°%° n
+ Obs: SAT solvers at present (but formula dependent)

457
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The CDCL SAT disruption

- CDCL SAT solving is a success story of Computer Science
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The CDCL SAT disruption

« CDCL SAT solving is a success story of Computer Science

- Conflict-Driven Clause Learning (CDCL)

+ (CDCL) SAT has impacted many different fields

« Hundreds (thousands?) of practical applications
Model-Based Diagnosis

- e Noise Analysis Technology Mapni
Network Security Management_ Falt lut:gllniaztggiu:fl?"ll Pedigree Eg"S'Ste'fgy “gunlﬁ:ytiu: %pézﬁiﬁﬁ'gﬁfn

Maximum SatisfiabilityConfigurationeryination anaiysis
Software Testlngfilterﬂesign Switching Network Verification

Equivalence Checking Resource Constrained Scheduling

Satisfiability Modulo Theoriespacyage Nianagement smisic ety bhatin

Quantified Boolean Furmula§ 3 . F
Software Model Checking startugramming - FF . Koe ™
aplotyming _wodel FindingHardware Model Checking

Test Pattern Generation PIannlng Lugic Synthesis Design Debugging

Power Es“"“’"""[_:irnu_it,l)elay I:omputatiun Genome Rearrangement .
Test Suite Minimization Lazy Ela"se Generatmn
Pseudo-Boolean Formulas
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So, what is a CDCL SAT solver?

 Extend DPLL SAT solver with: [DPs0, DLLG2]
+ Clause learning & non-chronological backtracking [MS95, MSS96, MS399]
+ Search restarts [GSC97, BMS00, Hua07, Bie08, LOM T 18]

- Lazy data structures

+ Conflict-guided branching

7157



+ Extend DPLL SAT solver with: [DP60, DLL62]

+ Clause learning & non-chronological backtracking [MS95, MSS96, MS399]
. EXplOit UIPs [MS95, MSS99, ZMMMO1, S5512]
+ Minimize learned clauses [5B09, Gelos, LLx+17]
+ Opportunistically delete clauses [MSS96, MSS99, GNO2, AS09]

+ Search restarts [GSC97, BMS00, Hua07, Bie08, LOM T 18]

« Lazy data structures
+ Watched literals MMz +01]

+ Conflict-guided branching

+ Lightweight branching heuristics MMz +o1]
+ Phase saving [PD07]

7157



CDCL timeline - somewhat incomplete

1960 1995 2001 2009
DP GRASP  Chaff Glucose
l | | |
I I I
1962 1995 2003
DPLL POSIT Minisat

+ DPLL (DP/DLL): backtracking search with unit propagation
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GRASP - a somewhat unknown story

Efficient Generation of Test Patterns Using Boolean Difference

Tracy Larrabee
Computer Science Department
Stanford University‘
Stanford, CA 94305

Abstract

Most automatic test pattern generation systems for combi-
national circuits generate a test for a given fault by directly
searching a data structure representing the circuit to be
tested. This paper describes a new system that divides the
problem into two parts: First, it constructs a formula ex-
pressing the Boolean difference between the unfaulted and
faulted circuits. Second, it applies a Boolean satisfiability
algorithm to the resulting formula. The new system can in-
corporate any of the heuristics used by structural search
techniques. It is not only quite general, but is able to
test or prove untestable every fault in the popular Brglez- ITC1 989
Fujiwara[1] test benchmark.

9/57



GRASP - a somewhat unknown story

Timing Analysis and Delay-Fault Test Generation
using Path-Recursive Functions®

Patrick C. McGeer Alexander Saldanha Paul R. Stephan Robert K. Brayton
Alberto L. Sangiovanni-Vincentelli

University of California - Berkeley CA

Abstract

Functional analysis of paths through combinational logic cir-
cuits has recently emerged as a critical problem in timing anal-
ysis and various forms of test generation. In this paper, we in-
troduce an efficient method for generating the functional forms
of path analysis problems. We demonstrate that the resulting
function is linear in the size of the circuit. The functions are
then tested for satisfiability either using a Boolean network sat-
isfiability algorithm suggested in [5] or through the construc-
tion of BDD's [1]. The effectiveness of the proposed approach
is shown for timing analysis and robust path delay-fault test
generation. This method also holds promise for both static
and dynamic hazard analysis, and for test generation using

all other delay-fault models, T-irredundant fault models, and
stuck-open fault models. ICCAD 1991
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GRASP - a somewhat unknown story

4 1EEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. 1, JANUARY 1992

Test Pattern Generation Using Boolean Satisfiability

Tracy Larrabee, Member, IEEE

Abstract—This article describes the Boolean satisfiability
method for generating test patterns for single stuck-at faults in
combinational circuits. This new method generates test pat-
terns in two steps: First, it constructs a formula expressing the
Boolean difference between the unfaulted and faulted circuits.
Second, it applies a Boolean satisfiability algorithm to the re-
sulting formula. This approach differs from previous methods
now in use, which search the circuit structure directly instead
of constructing a formula from it. The new method is general
and effective: it allows for the addition of heuristics used by
structural search methods, and it has produced excellent re-
sults on popular test pattern generation benchmarks. IEEE TCAD 1 992
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GRASP - a somewhat unknown story

EECS 579: Digital System Testing

Instructor: John P. Hayes

Coverage
This course examines the theory and practice of fault analysis, test
generation, and design for testability for digital circuits and systems.

Lab

A term project or paper is required which is tailored to individual student interests, and typically
involve one of the following:

A. Programming a test generation or simulation algorithm covered in the course

B. In-depth literature survey of some advanced topic

C. Individual research into some special topic or problem

D. Experiments with commercial test and simulation CAD hardware or software

All projects require a written report and an oral presentation to the class at the end of the term.
Iltem D is subject to availability of the hardware and software needed.

Textbook(s) UofM Spring’92
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EECS 579: Digital System Testing

Instructor: John P. Hayes

Coverage
This course examines the theory and practice of fault analysis, test
generation, and design for testability for digital circuits and systems.

Lab
A term project or paper is required which is tailored to individual student interests, and typically
involve one of the following:

A. Programming a test generation or simulation algorithm covered in the co
B. In-depth literature survey of some advanced topic

C. Individual research into some special topic or problem

D. Experiments with commercial test and simulation CAD hardware or softwa
All projects require a written report and an oral presentation to the class at the &
Iltem D is subject to availability of the hardware and software needed.

Textbook(s) UofM Spring’92

Larrabee’s
SAT algorithm
didn’t work!
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GRASP - a somewhat unknown story

Dynamic Search-Space Pruning Techniques in Path Sensitization

Jodo P. Marques Silva and Karem A. Sakallah
Department of Electrical Engineering and Computer Science
University of Michigan

Abstract— A powerful combinational path sensitization engine is
required for the efficient implementation of tools for test pattern
generation, timing analysis, and delay fault testing. Path sensiti-
zation can be posed as a search, in the n-dimensional Boolean
space, for a consistent assignment of logic values to the circuit
nodes which also satisfies a given condition. In this paper we pro-
pose and demonstrate the effectiveness of several new techniques
for search-space pruning for test pattern generation. In particu-
lar, we present linear-time algorithms for dynamically identify-
ing unique sensitization points and for dynamically maintaining
reduced head line sets. In addition, we present two powerful
mechanisms that drastically reduce the number of backtracks:
failure-driven assertions and dependency-directed backtracking.
Both mechanisms can be viewed as a form of learning while
searching and have analogs in other application domains. These
search pruning methods have been implemented in a generic
path sensitization engine called LEAP. A test pattern generator,
TG-LEAP, that uses this engine was also developed. We present
experimental results that compare the effectiveness of our pro-
posed search pruning strategies to those of PODEM, FAN, and
SOCRATES. In particular, we show that LEAP is very efficient
in identifying undetectable faults and in generating tests for diffi-
cult faults. DAC 1994
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Dynamic Search-Space Pruning Techniques in Path Sensitization

Jodo P. Marques Silva and Karem A. Sakallah
Department of Electrical Engineering and Computer Science
University of Michigan

Abstract— A powerful combinational path sensitization engine is
required for the efficient implementation of tools for test pattern
generation, timing analysis, and delay fault testing. Path sensiti-
zation can be posed as a search, in the n-dimensional Boolean
space, for a consistent assignment of logic values to the circuit
nodes which also satisfies a given condition. In this paper we pro-
pose and demonstrate the effectiveness of several new techniques
for search-space pruning for test pattern generation. In particu-
lar, we present linear-time algorithms for dynamically identify-
ing unique sensitization points and for dynamically maintaining
reduced head line sets. In addition, we present two powerful
mechanisms that drastically reduce the number of backtracks:
failure-driven assertions and dependency-directed backtracking.
Both mechanisms can be viewed as a form of learning while
searching and have analogs in other application domains. These
search pruning methods have been implemented in a generic
path sensitization engine called LEAP. A test pattern generator,
TG-LEAP, that uses this engine was also developed. We present
experimental results that compare the effectiveness of our pro-
posed search pruning strategies to those of PODEM, FAN, and
SOCRATES. In particular, we show that LEAP is very efficient
in identifying undetectable faults and in generating tests for diffi-

cult faults. DAC 1994

UIP’s inspired
on USP’s!
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GRASP - a somewhat unknown story

SEARCH ALGORITHMS FOR SATISFIABILITY PROBLEMS
IN COMBINATIONAL SWITCHING CIRCUITS

by
Jodo Paulo Marques da Silva

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Electrical Engineering)
in The University of Michigan
1995
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by

Jodo Paulo Marques da Silva

A dissertation submitted in partial fulfillment Proposes
of the requirements for the degree of
Doctor of Philosophy modern clause
(Electrical Engineering)

in The University of Michigan learning!
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GRASP - a somewhat unknown story

IMPROVEMENTS TO PROPOSITIONAL SATISFIABILITY
SEARCH ALGORITHMS

JON WILLIAM FREEMAN

A DISSERTATION

in

COMPUTER AND INFORMATION SCIENCE

Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy.
1995
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IMPROVEMENTS TO PROPOSITIONAL SATISFIABILITY
SEARCH ALGORITHMS

JON WILLIAM FREEMAN

A DISSERTATION

in

COMPUTER AND INFORMATION SCIERYY”, .
Claims clause

learning will

not work!
Presented to the Faculties of the University of Pennsylvania in Partial Fullm

Requirements for the Degree of Doctor of Philosophy.
1995
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GRASP - a somewhat unknown story

GRASP—A New Search Algorithm for Satisfiability

Jodo P Marques Silva Karem A. Sakallah
Cadence European Laboratories Department of EECS
IST/INESC University of Michigan
1000 Lisboa, Portugal Ann Arbor, Michigan 48109-2122
Abstract

This paper introduces GRASP (Generic seaRch Algorithm
for the Satisliability Problem), an integrated algorithmic frame-
work for SAT that unifies several previously proposed search-
pruning techniques and facilitates identification of additional
ones. GRASP is premised on the inevitability of conflicts during
search and its most distinguishing feature is the ion of
basic backtracking search with a powerful conflict analysis pro-
cedure. Analyzing conflicts to determine their causes enables
GRASP to backtrack non-chronologically to earlier levels in the
search tree, potentially pruning large portions of the search space.
In addition, by ‘recording” the causes of conflicts, GRASP can
recognize and preempt the occurrence of similar conflicts later on
in the search. Finally, straightforward bookkeeping of the causal-
ity chains leading up to conflicts allows GRASP to identify
assignments that are necessary for a solution to be found. Experi-
mental results obtained from a large number of benchmarks,
including many from the field of test pattern generation, indi-
cate that application of the proposed conflict analysis techniques
to SAT algorithms can be extremely effective for a large number

of representative classes of SAT instances. ICCAD 1996
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GRASP - a somewhat unknown stor

506 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO.5, MAY 1999

GRASP: A Search Algorithm
for Propositional Satisfiability

Jodo P. Marques-Silva, Member, IEEE, and Karem A. Sakallah, Fellow, IEEE

Abstract—This paper introduces GRASP (Generic seaRch Algorithm for the Satisfiability Problem), a new search algorithm for
Propositional Satisfiability (SAT). GRASP incorporates several search-pruning techniques that proved to be quite powerful on a wide
variety of SAT problems. Some of these techniques are specific to SAT, whereas others are similar in spirit to approaches in other
fields of Artificial Intelligence. GRASP is premised on the inevitability of conflicts during the search and its most distinguishing feature is
the augmentation of basic backtracking search with a powerful conflict analysis procedure. Analyzing conflicts to determine their
causes enables GRASP to backtrack nonchronologically to earlier levels in the search tree, potentially pruning large portions of the
search space. In addition, by “recording” the causes of conflicts, GRASP can recognize and preempt the occurrence of similar conflicts
later on in the search. Finally, straightforward bookkeeping of the causality chains leading up to conflicts allows GRASP to identify
assignments that are necessary for a solution to be found. Experimental results obtained from a large number of benchmarks indicate
that application of the proposed conflict analysis techniques to SAT algorithms can be extremely effective for a large number of
representative classes of SAT instances.

Index Terms—Satisfiability, search algorithms, conflict diagnosis, conflict-directed nonchronological backtracking, conflict-based
equivalence, failure-driven assertions, unique implication points.

<+
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GRASP - a somewhat unknown story

Using Randomization and Learning to Solve
Hard Real-World Instances of Satisfiability

CP 2000

Lufs Baptista and Joao Marques-Silva

Department of Informatics, Technical University of Lisbon,
IST/INESC/CEL, Lisbon, Portugal
{1mtb, jpms}@algos. inesc.pt

Abstract. This paper addresses the interaction between randomization,
with restart strategies, and learning, an often crucial technique for prov-
ing unsatisfiability. We use instances of SAT from the hardware veri-
fication domain to provide evidence that randomization can indeed be
essential in solving real-world satisfiable instances of SAT. More inter-
estingly, our results indicate that

Finally, we
utilize and expand the idea of algorithm portfolio design to propose an
alternative approach for solving hard unsatisfiable instances of SAT.
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GRASP - a somewhat unknown story

From: AAAI-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Using CSP Look-Back Techniques to Solve Real-World SAT Instances

Roberto J. Bayardo Jr.

The University of Texas at Austin
Department of Computer Sciences (C0500)
Austin, TX 78712 USA
bayardo @cs.utexas.edu
http:/fwww.cs.utexas.edu/users/bayardo

Abstract

‘We report on the performance of an enhanced version of the
“Davis-Putnam” (DP) proof procedure for propositional
satisfiability (SAT) on large instances derived from real-
world problems in planning, scheduling, and circuit diagnosis
and synthesis. Our results show that incorporating CSP look-
back techniques -- especially the relatively new technique of
relevance-bounded learning -- renders easy many problems
which otherwise are beyond DP’s reach. Frequently they
make DP, a systematic algorithm, perform as well or better
than stochastic SAT algorithms such as GSAT or WSAT. We
recommend that such techniques be included as options in
implementations of DP, just as they are in systematic
algorithms for the more general constraint satisfaction
problem.

Robert C. Schrag
Information Extraction and Transport, Inc.
1730 North Lynn Street, Suite 502
Arlington, VA 22209 USA
schrag @iet.com
http://www.iet.com/users/schrag

AAAI 1997
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GRASP - a somewhat unknown story

SATO: An Efficient Propositional Prover

CADE 1997
Hantao Zhang*

Department of Computer Science
The University of Iowa Rerasn
Iowa City, IA 52242-1419, USA
hzhang@cs.uiowa.edu

SATO (Satisfiability Testing Optimized) is a propositional prover based on
the Davis-Putnam method [3], which is is one of the major practical methods for
the satisfiability (SAT) problem of propositional logic. The first report of SATO
appeared in [12]. Since then, we constantly add new techniques into SATO to
make it more efficient {14, 13].
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GRASP - a somewhat unknown story

Symbolic Model Checking without BDDs*

Armin Biere!, Alessandro Cimatti?, Edmund Clarke', and Yunshan Zhu'!

' Computer Science Department, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, U.S.A
{Armin.Biere, Edmund.Clarke, Yunshan. Zhu}@cs.cmu.edu
2 Istituto per la Ricerca Scientifica e Tecnologica (IRST)
via Sommarive 18, 38055 Povo (TN), Italy
cimatti@irst.itc.it

Abstract. Symbolic Model Checking [3l[14] has proven to be a powerful tech-
nique for the verification of reactive systems. BDDs [2] have traditionally been
used as a symbolic representation of the system. In this paper we show how
boolean decision procedures, like Stalmarck’s Method [16] or the Davis & Put-
nam Procedure [7], can replace BDDs. This new technique avoids the space blow
up of BDDs, generates counterexamples much faster, and sometimes speeds up
the verification. In addition, it produces counterexamples of minimal length. We
introduce a bounded model checking procedure for LTL which reduces model
checking to propositional satisfiability. We show that bounded LTL model check-
ing can be done without a tableau construction. We have implemented a model
checker BMC, based on bounded model checking, and preliminary results are

presented. TACAS 1999
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GRASP - a somewhat unknown story

3341

Chaff: Engineering an Efficient SAT Solver
Matthew W. Moskewicz Conor F. Madigan Ying Zhao, Lintao Zhang, Sharad Malik
Department of EECS Department of EECS Department of Electrical Engineering
UC Berkeley MIT Princeton University
moskewcz@alumni.princeton.edu cmadigan@mit.edu {yingzhao, lintaoz, sharad}@ee.princeton.edu
ABSTRACT

Boolean Satisfiability is probably the most studied of

e

c ial optimization/search problems. Significant effort has
been devoted to trying to provide practical solutions to this
problem for problem instances encountered in a range of
applications in Electronic Design Automation (EDA), as well as
in Artificial Intelligence (AI). This study has culminated in the
development of several SAT packages, both proprietary and in the
public domain (e.g. GRASP, SATO) which find significant use in
both research and industry. Most existing complete solvers are
variants of the Davis-Putnam (DP) search algorithm. In this paper ~ [I/A lause learnin al

we describe the development of a new complete solver, Chaff,

which achieves significant performance gains through careful

engineering of all aspects of the search — especially a particularly

efficient implementation of Boolean constraint propagation (BCP)

and a novel low overhead decision strategy. Chaff has been able

to obtain one to two orders of magnitude performance

improvement on difficult SAT benchmarks in comparison with

other solvers (DP or otherwise), including GRASP and SATO. DAC 2001
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SAT Demise?
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Is there a problem with SAT?

+ Dwindling number of papers on SAT solving, e.g. at the SAT
conference
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Is there a problem with SAT?

+ Dwindling number of papers on SAT solving, e.g. at the SAT
conference
+ No major performance breakthrough in close to two decades...

« Unclear the net gain over large range of benchmarks

« Are SAT solvers being tuned to specific benchmarks?
+ What to do with preprocessing/inprocessing, e.g. when using SAT
solvers as oracles?

+ General perception among some researchers ...

+ Q: Is there a point in SAT research at present?
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3 SAT Resurgence
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CDCL SAT is ubiquitous in problem solving

Planning

Encodings

CEGAR QBF

Counting

Enumeration

Problem
Solving
with SAT

Oracles

MaxSAT

Embeddings

Min. Models

Backbones

B&B Search

Enumeration

OPT SAT

Lazy SMT
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CDCL SAT is ubiquitous in problem solving

Eager SMT B&B Search

Planning Enumeration

Problem

Solving

. with SAT .
Encodings Embeddings OPT SAT

Min. Models Lazy SMT

CEGAR QBF Oracles Backbones

Counting

Enumeration MaxSAT

SAT is the oracles’ oracle:
MaxSAT, QBF, LCG, #SAT, SMT,
ASP, FOL, ...
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Age of SAT-enabled modular reasoning

MSMP
MaxSAT
QBF, MLK

#SAT

DQBF SAT-
Enabled
Modular

Reasoning

SMT
CP
ASP
FOL
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Age of SAT-enabled modular reasoning

MSMP
MaxSAT
QBF, MLK

#SAT

DQBF SAT-
Enabled
Modular

Reasoning

SAT is a
key enabler
technology

SMT
CP
ASP
FOL

15/ 57



So what are SAT oracles?

SAT Oracles

NP oracles

Yes witnesses

No summaries
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The power of the (SAT) oracle

« 0: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula F, using an NP
oracle
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The power of the (SAT) oracle

« 0: How to solve the FSAT problem?

FSAT: Compute a model of a satisfiable CNF formula F, using an NP
oracle
+ A possible algorithm:
1. Analyze each variable x; € {x1,...,xn} = var(F), in order
2. i+ 1land F; &£ F
Call NP oracle on F; A (X;)
If answer is yes, then Fj ; < F; U ()
If answer is no, then F, | < F; U (—x;)
+—i+1
7. If i < n, then repeat from 3.

e fu > O3

- Algorithm needs |var(F)| calls to an NP oracle

+ Note: Cannot solve FSAT with logarithmic number of NP oracle calls,
unless P = NP (GF93]

+ FSAT is an example of a function problem
+ Note: FSAT can be solved with one SAT oracle call

17157



Beyond decision problems
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Beyond decision problems

Answer Problem Type
Yes/No Decision Problems
Some solution Function Problems

All solutions Enumeration Problems

# solutions Counting Problems
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... and beyond NP - decision and function problems

A

ul
A

m

NP = ¥P 19 = coNP FNP = Fxf FII? = coFNP

N N S

Af =3 =P =TIf = A? FA§ = FZ§ = FP = FII§ = FA}
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Oracle-based problem solving - simple scenario

Bounded # of
calls / queries

Poly-time Yes/No + Decision
Algorithm Witness Procedure

SAT, SMT, CSP, ...
Solver / Oracle
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Oracle-based problem solving - general setting

Bounded # of
calls / queries

Pely-time Yes/No + Decision
Algorithm Witness Procedure

SAT, SMT, CSP, ...
Solver / Oracle
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Many problems to solve — within FP"

Answer Problem Type
Yes/No Decision Problems
Some solution Function Problems

All solutions Enumeration Problems
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Many problems to solve — within FP"

Answer Problem Type
Yes/No Decision Problems
Some solution Function Problems

All solutions Enumeration Problems

3
Function Problems on Propositional Formulas

MaxSAT MinSAT
PBO WBO

Minimal Models . .
Prime Implicants

Maximal Models Autarkies
Backbones Prime Implicates
MUSes MCSes MESes Indep. Vars
WFSes MSSes MDSes Implicant Ext.
MNSes Implicate Ext.
MCFSes
~ J

22/57



Many problems to solve — within FP"

Problem Type
Decision Problems

Answer
Yes/No
Some solution
All solutions

Function Problems
Enumeration Problems

p
Function Problems on Propositional Formulas

.7 Optimization Problems 3
MinSAT |

g mTEiEEE Prime Implicants
,/ Maximal Models Autarkies \\
U Backbones Prime Implicates |
| |
|\ MUSes MCSes MESes Indep. Vars ,'

\\ FSes MSSes MDSes Implicant Ext. /

\ MNSes Implicate Ext. /
Sq MCFSes 7

.- -~ - -----=----=--=-=-=-=-=-=-- J
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Selection of topics

Eager SMT B&B Search

Planning Enumeration

Problem

Solving

with SAT
Encodings Embeddings OPT SAT

Min. Models Lazy SMT

CEGAR QBF Oracles Backbones

Counting

MUS enumeration

Enumeration MaxSAT

MUS extraction MaxSAT solving
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Minimal Unsatisfiability
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Analyzing inconsistency - timetabling

Subject Day Time Room
Intro Prog Mon  9:00-10:00  6.2.46
Intro Al Tue  10:00-11:00 8.2.37

Databases Tue 11:00-12:00 8.2.37
... (hundreds of consistent constraints)
Linear Alg Mon  9:00-10:00  6.2.46
Calculus Tue 10:00-11:00 8.2.37
Adv Calculus  Mon  9:00-10:00 8.2.06
... (hundreds of consistent constraints)

+ Set of constraints consistent / satisfiable?
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Analyzing inconsistency - timetabling

Subject Day Time Room
Intro Prog Mon  9:00-10:00  6.2.46
Intro Al Tue  10:00-11:00 8.2.37

Databases Tue  11:00-12:00 8.2.37
... (hundreds of consistent constraints)

Adv Calculus Mon  9:00-10:00 8.2.06
... (hundreds of consistent constraints)

« Set of constraints consistent / satisfiable? No
+ Minimal subset of constraints that is inconsistent / unsatisfiable?

-+ Minimal subset of constraints whose removal makes remaining
constraints consistent?

Minimality

+ How to compute these minimal sets? .
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Unsatisfiable formulas - MUSes & MCSes

« Given F(= 1), M C Fis a Minimal Unsatisfiable Subset (MUS) iff
ME L and VM/QM,M/% 1

(—\Xl Vv —\Xz) N (X1) A (Xz)/\(—\Xg V —|X4) A (XJ) A (X4) A\ (X5 \Y X6)

26 /57



Unsatisfiable formulas - MUSes & MCSes

« Given F(= 1), M C Fis a Minimal Unsatisfiable Subset (MUS) iff
ME L and VM/QM,M/% 1

(—\Xl V —\Xz) A\ (X1) A (Xz)

26 /57



Unsatisfiable formulas - MUSes & MCSes

« Given F(= 1), M C Fis a Minimal Unsatisfiable Subset (MUS) iff
ME L and VM/QM,M/% 1

(—\Xl V —\Xz) A\ (X1) A (Xz)

« Given F(= L), C C Fis a Minimal Correction Subset (MCS) iff
.F\Cif 1 and Vclgc7.7:\cl': 1. SZ.F\CIS MSS

(‘\Xl V ‘\XQ) A\ (X1) A (XQ)/\(“XS V ‘|X4) A (X3) AN (X4) A (X5 \/X6)

26 /57



Unsatisfiable formulas - MUSes & MCSes

« Given F(= 1), M C Fis a Minimal Unsatisfiable Subset (MUS) iff
ME L and VM/QM,M/% 1

(—\Xl V —\Xz) A\ (X1) A (Xz)

« Given F(= L), C C Fis a Minimal Correction Subset (MCS) iff
.F\Cif 1 and Vclgc7.7:\cl': 1. SZ.F\CIS MSS

A\ (Xl) N (XQ) A (X3) AN (X4) A (X5 \/X6)

26 /57



Unsatisfiable formulas - MUSes & MCSes

« Given F(= 1), M C Fis a Minimal Unsatisfiable Subset (MUS) iff
ME L and VM/QM,M/% 1

(—\Xl V —\Xz) A\ (X1) A (Xz)

« Given F(= L), C C Fis a Minimal Correction Subset (MCS) iff
.F\Cif 1 and Vclgc7.7:\cl': 1. SZ.F\CIS MSS

A\ (Xl) N (XQ) A (X3) AN (X4) A (X5 \/X6)

MUSes and MCSes are (subset-)minimal sets
MUSes and minimal hitting sets of MCSes and vice-versa  ireis, ssos]

Easy to see why

26 /57



Unsatisfiable formulas - MUSes & MCSes

« Given F(= 1), M C Fis a Minimal Unsatisfiable Subset (MUS) iff
ME L and VM/QM,M/% 1

(—\Xl V —\Xz) A\ (X1) A (Xz)
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.F\Cif 1 and Vclgc7.7:\cl': 1. SZ.F\CIS MSS

A\ (Xl) N (XQ) A (X3) AN (X4) A (X5 \/X6)

MUSes and MCSes are (subset-)minimal sets

+  MUSes and minimal hitting sets of MCSes and vice-versa  ireis, ssos]

Easy to see why

+ How to compute MUSes & MCSes efficiently with SAT oracles?
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Why it matter:

- Analysis of over-constrained systems

+ Model-based diagnosis [Reig7]
- Software fault localization
+ Spreadsheet debugging
- Debugging relational specifications (e.g. Alloy)
- Type error debugging
+ Axiom pinpointing in description logics

+ Model checking of software & hardware systems
+ Inconsistency measurement
+ Minimal models; MinCost SAT; ...

« Find minimal relaxations to recover consistency
+ But also minimum relaxations to recover consistency, eg. MaxSAT

- Find minimal explanations of inconsistency
+ But also minimum explanations of inconsistency, eg. Smallest MUS

27/ 57



Why it matter:

- Analysis of over-constrained systems

+ Model-based diagnosis [Reig7]
- Software fault localization
+ Spreadsheet debugging
- Debugging relational specifications (e.g. Alloy)
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+ Model checking of software & hardware systems Enumeration

+ Inconsistency measurement
+ Minimal models; MinCost SAT; ...
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« Find minimal relaxations to recover consistency
+ But also minimum relaxations to recover consistency, eg. MaxSAT

- Find minimal explanations of inconsistency
+ But also minimum explanations of inconsistency, eg. Smallest MUS
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Deletion-based algorithm

Input :Set F
Output: Minimal subset M
begin

M F

foreach c € M do

if ~SAT(M \ {c}) then
L L M +— M\ {c} /] If =SAT(M \ {c}), then c € MUS

return M [/ Final M is MUS

end

« Number of oracles calls: O(m) [co91, BDTWS3]
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Deletion-based algorithm

Monotonicity

Input :Set F onotor

Output: Minimal subset M 'mPllle &

begin essential!
M~ F

foreach c € M do
if -=SAT(M \ {c}) then
LM<—M\{C} /| Remove ¢ from M

return M // Final M is MUS
end

« Number of oracles calls: O(m) [co91, BDTWS3]
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Deletion - MUS example

C1 Co Cs3 Cy Cs Ce Cr
(=x1V=X2) (X)) (X2) (=XsV-Xs) (X3) (Xa) (X5VXe)

M M\ {c} —SAT(M\ {c}) Outcome
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Deletion - MUS example
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Deletion - MUS example

C1
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Deletion - MUS example

C1 Co C3 (o7} Cs Co Cr
(X1 VoXe)  (X1)  (X2) (7XsV Xa) (Xs)  (Xa) (X5 VXe)

M M\ {c} —SAT(M\ {c}) Outcome

C1..C7  C2..C7 1 Drop ¢
C2..C7  C3..Ct 1 Drop c2
C3..C7  C4..C7 1 Drop c3
C4..C7  C5..C7 0 Keep ¢4
C4..C7  CaCeCr 0 Keep ¢s
C4..C7  CaCs5C7 0] Keep cs
C4..C7  C4..Co 1 Drop ¢z

+ MUS: {C4, Cs, C(;}
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Many MUS algorithms

« Formula F with m clauses k the size of largest minimal subset

Algorithm

Oracle Calls Reference

Insertion-based
MCS_MUS
Deletion-based
Linear insertion
Dichotomic
QuickXplain

Progression

- Note: Lower bound in FPHP

O(I’(’ m) [dSNP88, vMwW08]

O(km) [BK15]

O(m) [cD91, BDTW93]

O(m) [MSL11, BLM12]

O(k log(m)) [H15806]
O(k+ Rk log(%)) [un04]
O(k log(1 + %)) (MjB13]

3

and upper bound in FPN?

[cT95]

« Oracle calls correspond to testing unsatisfiability with SAT solver

- Practical optimizations: clause set trimming; clause set refinement;
redundancy removal; (recursive) model rotation
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MUS Enumeration
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How to enumerate MUSes?
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How to enumerate MUSes?

1. Standard solution:
Exploit HS duality between MCSes and MUSes [Reig7, L50g]
MCSes are MHSes of MUSes and vice-versa
« Enumerate all MCSes and then enumerate all MHSes of the MCSes, i.e.

compute all the MUSes
+ Problematic if too many MCSes, and we want the MUSes

+ And, often we want to enumerate the MUSes
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How to enumerate MUSes?

1. Standard solution:
Exploit HS duality between MCSes and MUSes [Reig7, L50g]

MCSes are MHSes of MUSes and vice-versa

« Enumerate all MCSes and then enumerate all MHSes of the MCSes, i.e.

compute all the MUSes
+ Problematic if too many MCSes, and we want the MUSes

+ And, often we want to enumerate the MUSes

2. Exploit recent advances in 2QBF solving

3. Implicit hitting set dualization [LPHI6]

- Most effective if MUSes provided to user on-demand
« Also used in prime enumeration, propositional abduction, logic
synthesis, SMUS, quantification & XAl
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How to enumerate MUSes, preferably?

Formulas P and N Formula F’
Select subset of F

<

Block MCS/MUS

1. Keep sets representing computed MUSes (set ) and MCSes (set P)
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How to enumerate MUSes, preferably?

Formulas P and N Formula F’
Select subset of F

<

Block MCS/MUS

1. Keep sets representing computed MUSes (set A/) and MCSes (set P)
2. Compute minimal hitting set (MHS) H of A/, subject to P
+ Must not repeat MUSes
» Must not repeat MCSes
+ Maximize clauses picked, i.e. prefer to check satisfiability on as many clauses as
possible
« If unsatisfiable: no more MUSes/MCSes to enumerate
3. Target set: 7/, i.e. F minus clauses from H
4. Run SAT oracle on 7’
« If 7 unsatisfiable: extract new MUS
+ Otherwise, H is already an MCS of *

5. Repeat loop

33/57



MARCO/eMUS algorithm

Input: CNF formula 7
1 begin
2 I {pilceF)
3 (P,N) < (0,0)
4 while true do
5 (st,H) < MinHittingSet(\N, P)
6 if not st then return
7 F' < A{ci|pi€ I Ap; ¢ H}
8 if not SAT(F’) then
9 M + ComputeMUS(F")

10 ReportMUS (M)

n N +— N U{-p;|cie M}
12 else

13 L'P(—PU{D,“D(EH}

1% end
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An example

P1P2P3P4P5PsP7 | S/U

1111111 u —p1 VvV —p2 V p3
0111111 U —ps V —pr
0111101 S p1V Pps
1011101 u —p1V pg V Pps
1101010 S p3 V ps V p7
1010110 S p2V paVpr
1100101 S ps V pa V Pe
0111110 5 pLV pr
1101001 5 ps V Ps V Pe
1010101 S p2 V psaV ps
1011001 S p2 V ps V ps
1100110 S p3 V psVpr
1011010 S P2V ps V pr7
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An example

p1P2p3PaPsPeP7 | S/U

U | =p1V—p2V —ps
0111111 U —ps V —pr
0111101 S p1V Ps
1011101 U | -p1V -psV —ps
1101010 S ps V Ps V pr
1010110 S p2V paVpr
1100101 S ps V paV Pe
0111110 S p1V pr
1101001 s ps V Ps V Pe
1010101 S p2V paV pg
1011001 S p2V ps V pg
1100110 S p3 V paV pr
1011010 s p2 V ps V pr
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An example

P1P2p3p4Pspepr | SIU
1111111 u
0111111 u —pe V —p7
0111101 S P11V Pe cL=p ct=-pVvg
1011101 U | =p1 V —psV —ps
1101010 S p3 V ps V pr
1010110 S p2V paVpr
1100101 S pP3 V paV Pps
0111110 S p1V p7
1101001 S pP3 V ps V Pe C3 = —r
1010101 S p2V paV pg
1011001 S p2V ps V pg
1100110 S p3 V paV pr
1011010 S p2 V ps V pr
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0111111 U —ps V —pr
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An example

P1P2P3P4P5PsP7 | S/U
1111111 u —p1 VvV —p2 V p3
0111111 U —ps V —pr
0111101 S
1011101 u —p1V pg V Pps
1101010 S p3 V ps V p7
1010110 S p2V paVpr
1100101 S ps V pa V Pe
0111110 5 pLV pr
1101001 5 ps V Ps V Pe
1010101 S p2 V paV Ps
1011001 S p2 V ps V ps
1100110 S p3 V psVpr
1011010 S P2V ps V pr7

35/57



Maximum Satisfiability
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X6 V X2 —Xg V Xo X9 V X1 —X1

—Xg V Xg Xg V —Xg X2 V X4 X4 V X5

X7V X5 X7 V X5 —X5 V X3 —X3

- Given unsatisfiable formula, find largest subset of clauses that is
satisfiable
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Recap MaxSAT

—Xg V Xo —Xo V X1 —X1
—Xg V Xg Xg V —Xg X2 V X4
X7 V X5 X5 V X3 —X3

- Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

« A Minimal Correction Subset (MCS) is an irreducible relaxation of the
formula
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Recap MaxSAT

Xg V Xo —Xg V Xo —Xo V X1 —X1
—Xg V Xg Xg V —Xg X2 V X4 —Xq V X5
X7V X5 X7V X5 —X5 V X3 —X3

- Given unsatisfiable formula, find largest subset of clauses that is
satisfiable
« A Minimal Correction Subset (MCS) is an irreducible relaxation of the
formula
« The MaxSAT solution is one of the smallest cost MCSes
+ Note: Clauses can have weights & there can be hard clauses

- Many practical applications [sz6n77]
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MaxSAT problem(s)

Hard Clauses?

No Yes

Weights?

Yes
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MaxSAT problem(s)

Hard Clauses?
No Yes
Weights? Plain Partial
Yes Weighted Weighted Partial

+ Must satisfy hard clauses, if any
- Compute set of satisfied soft clauses with maximum cost
+ Without weights, cost of each falsified soft clause is 1

« Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)
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MaxSAT problem(s)

Hard Clauses?
No Yes
Weights? Plain Partial
Yes Weighted Weighted Partial

+ Must satisfy hard clauses, if any
- Compute set of satisfied soft clauses with maximum cost
+ Without weights, cost of each falsified soft clause is 1

« Or, compute set of falsified soft clauses with minimum cost
(s.t. hard & remaining soft clauses are satisfied)

+ Note: goal is to compute set of satisfied (or falsified) clauses;
not just the cost!

38/57



Many MaxSAT approaches

Relax cls given
models

Iterative
MHS & SAT

No unit prop; No

Branch g
& Bound cl. learning
é"‘u?gs(lj {terative All cls relaxed
MaxSAT Al-
gorithms
; Relax cls given
Iterative 5
MHS Core Guided  ynsat cores
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Many MaxSAT approaches

No unit prop; No

Branch X
8. Bauid cl. learning
Relax cls given Model .
models Guided Iterative All cls relaxed
MaxSAT Al-
gorithms
Iterative e : Relax cls given
MHS & SAT MHS Core Guided unsat cores

- For practical (industrial) instances: core-guided & iterative MHS
approaches are the most effective [MaxsaTIa]
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Maximum Satisfiability
Iterative SAT Solving
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Basic MaxSAT with iterative SAT solving

X V X2 —Xg V Xo —X2 V X1 —X1
—Xg V Xg Xg V —Xg Xo V Xy —X4 V X5
X7V X5 —X7 V X5 X5 V X3 —X3

Example CNF formula

41/ 57



Basic MaxSAT with iterative SAT solving

X V X2V —Xg V XaVIy —Xo V X1 VI3

—Xg V Xg\VI5 Xe V —XgVIg Xo V X4VI7

X7V X5V g —X7 V X5VI10 X5 V X3VI11
i1:21 ri <12

Relax all clauses; Set UB = 12 + 1

—X1Vry

—X4 V X5\VIg

—X3VIi2
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Basic MaxSAT with iterative SAT solving

X6 V Xa VI —Xe V Xa\VIg —Xg V X1VI3 X1 VIy

—Xg V XgVI5 Xe V —XgVIg Xo V XqVI7 —X4 V X5VIg

X7V X5V'Ig —X7 V X5VI10 —X5 V X3VI11 —X3VI12
flil ri<12

Formula is SAT; E.g. allx; =0and r; = r; = rg = 1 (i.e. cost = 3)
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Basic MaxSAT with iterative SAT solving

Xe V XaVI —Xe V X2V —X2 V X1VI3

—Xe V Xg\VI5 Xe V —XgVIg X2 V XaVI7

X7V X5VIg —X7 V X5VI10 —X5 V X3VI11
il:21 ri <2

Refine UB =3

—X1Vry

—X4 V X5\VIg

—X3VIi2
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Basic MaxSAT with iterative SAT solving

Xe V X2V —Xg V X2V Io —Xo V X1 VI3 —X1VIy
—Xg V XgVTI;5 Xg V —Xg Vg Xo V XqVI7 X4 V X5VIg
X7 V X5Vl X7 VX5Vl X5 VX3V —X3Vri2
12 .
=1 li <2
Formulais SAT; Eg.x1 = X2 = 1;Xx3 = ... =xgs =0and ry = ry = 1 (i.e. cost = 2)
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Basic MaxSAT with iterative SAT solving

Xe V Xo VI —Xg V Xa VI —X3 V X1 VI3

—Xe V Xg\VI5 Xe V 7XgVIg Xo V X4 VI

X7V X5V g —X7 V X5VI0 X5 V X3VIy
i1:21 ri<l1

Refine UB = 2

—X1Vry

—X4 V X5\VIg

—X3VIi2
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Basic MaxSAT with iterative SAT solving

Xe V Xa\VIq —Xg V X2 VI —Xo V X1 VI3 —X1VIy

—Xg V XgVIs X V —XgVIg Xo V X4 VI7 —X4 V X5VIg

X7 V X5V X7 VX5Vl  —X5 VX3Vl —X3VI2
o<

Formula is UNSAT; terminate
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Basic MaxSAT with iterative SAT solving

Xe V Xo VI —Xg V Xa VI —X3 V X1 VI3

—Xe V Xg\VI5 Xe V 7XgVIg Xo V X4 VI
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MaxSAT solution is last satisfied UB: UB = 2

—X1Vry
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Basic MaxSAT with iterative SAT solving

Xe V Xo VI —Xg V Xa VI —X3 V X1 VI3

—Xe V Xg\VI5 Xe V 7XgVIg Xo V X4 VI

X7V X5V g —X7 V X5VI0 X5 V X3VIy
i1:21 ri<l1

MaxSAT solution is last satisfied UB: UB = 2

AtMostk/PB constraints over
all relaxation variables

—X1Vry

—X4 V X5\VIg

—X3VIi2

All (possibly many)
soft clauses relaxed

41/57



Maximum Satisfiability

Core-Guided Algorithms

4257



MSU3 core-guided algorithm

X V X2 —Xg V Xo —X2 V X1 —X1
—Xg V Xg Xg V —Xg Xo V Xy —X4 V X5
X7V X5 X7 V X5 —X5 V X3 —X3

Example CNF formula

43 /57



MSU3 core-guided algorithm

X V X2 —Xg V Xo X2 V X1 —X1
—Xg V Xg Xg V —Xg X2 V Xy =X V X5
X7V X5 X7 V X5 —X5 V X3 —X3

Formula is UNSAT; OPT < |¢| — 1; Get unsat core

43 /57



MSU3 core-guided algorithm

X6 \V Xo —Xg V X2 =X V X1 VI —X1 VI
—Xg V Xg X6 V —Xg Xa V X4 VI3 —X4 V X5\VIy
X7V X5 —X7 V X5 —X5 V X3\/Is —X3VIg
?:1 <l

Add relaxation variables and AtMostR, R = 1, constraint
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MSU3 core-guided algorithm
@ —Xg V Xo —Xo V X1VI

—Xg V Xg Xg V —Xg Xo V X4 VI3 —X4 V X5VTIy

—X1Vry

—X7 V X5 —X5 V X3VTr5 —X3Vrg

Formula is (again) UNSAT; OPT < |¢| — 2; Get unsat core
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MSU3 core-guided algorithm

X V XaVI7 —Xg V XaVIg —X2 V X1 VI —X1 VI
—Xg V Xg Xe V —Xg Xo V X4 VI3 —X4 V X5Vl
X7V X5VIg —X7 V X5VI10 —X5 V X3VIs5 X3Vl
,’1:01 rp <2

Add new relaxation variables and update AtMostk, k=2, constraint
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MSU3 core-guided algorithm

Xe V XaV Iy —Xg V Xo Vg —Xo V X1 VI —X1 Iy

—Xg V X3 X V —Xg Xo V X4\VI3 —Xa V X5V I4
X7V X5Vrg X7 V X5V I10 —X5 V X3VTr5 —X3Vrg
2’121 ri <2

Instance is now SAT
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MSU3 core-guided algorithm

X V XaVI7 —Xg V XaVIg —X2 V X1 VI —X1 VI
—Xg V Xg Xe V —Xg Xo V X4 VI3 —X4 V X5Vl
X7V X5Vrg X7V X5VI1o —X5 V X3VTI;5 —X3Vrg
,’1:01 I < 2

MaxSAT solutionis || —Z =12 -2 =10
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MSU3 core-guided algorithm

X V XaVI7 —Xg V XaVIg —X2 V X1 VI —X1 VI
—Xg V Xg Xe V —Xg Xo V X4 VI3 —X4 V X5Vl
X7V X5Vrg X7V X5VI1o —X5 V X3VTI;5 —X3Vrg
,’1:01 I < 2
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MSU3 core-guided algorithm

X V XaVI7 —Xg V XaVIg —X2 V X1 VI —X1 VI
—Xg V Xg Xe V —Xg Xo V X4 VI3 —X4 V X5Vl
X7V X5Vrg -1X7 V X5VI10 —X5 V X3VTI;5 —X3Vrg
,’1:01 I < 2

MaxSAT solutionis || —Z =12"-2 =10

AtMostRk/PB Some clauses Relaxed soft clauses

constraints used not relaxed become hard

43 /57



Maximum Satisfiability

Minimum Hitting Sets
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HS approach for MaxSAT

C1 = Xg V X2 Co = —Xg V X2 C3 = X2 V X1 Cy = X1

C5 = —Xg V Xg Ce = Xg V —Xg C7 = X2 V X4 Cg = X4 VX5

Co = X7 VX5 Cio = X7 V X5 Ci1 = X5 VX3 Ci2 = 7X3
K=0

+ Find MHS of K:
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HS approach for MaxSAT

C1 = Xg V X2 Co = —Xg V X2 C3 = X2 V X1 Cy = X1
Cs = —Xg V X3 Ce = X V —Xg C7 = X2V X4 Cs = X4 V X5
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HS approach for MaxSAT
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HS approach for MaxSAT

C1 = Xg V X2 Co = —Xg V X2 C3 = X2 V X1 Cy = X1
Cs = —Xg V Xg Ce = X6 V —Xg C7 = X2V X4 Cs = X4 V X5
Co = X7V X5 Cio = X7 V X5 Ci1 = X5 V X3 Ci2 = 7X3

K = {{c1,¢c2,¢3,¢4},{Co, C10,C11,C12}, {C3,C4,C7,C8,C11,C12}}

+ Find MHS of K: E.g. {c1,Co}
+ SAT(F \ {c1,¢9})? No

+ Core of F: {cs, ¢4, C7,Cs,C11,C12}. Update K
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HS approach for Ma

C1 = Xg V X2 Co = —Xg V X2 C3 = X2 V X1 Cy = X1
Cs = —Xg V X3 Ce = X V —Xg C7 = X2V X4 Cs = X4 V X5
Cog = X7V X5 Ci0 = X7V X5 C11 = X5 VX3 Ci2 = X3

K = {{c1,c2,c3,¢a},{Co, C10,C11,C12},{C3,Ca,C7,C8, C11,C12}}

+ Find MHS of K:
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HS approach for MaxSAT

C1 = Xg V X2 Co = —Xg V X2 C3 = X2 V X1 Cy = X1
Cs = —Xg V Xg Ce = X6 V —Xg C7 = X2V X4 Cs = X4 V X5
Co = X7V X5 Cio = X7 V X5 Ci1 = X5 V X3 Ci2 = 7X3

K = {{c1,¢c2,¢3,¢4},{Co, C10,C11,C12}, {C3,C4,C7,C8,C11,C12}}

+ Find MHS of K: E.g. {c4,Co}
° SAT(]:\ {C4, Cg})?
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MHS approach for MaxSAT

C1 = Xg V X2 Co = Xg V X2
Cs = X V Xs Ce = X6 V X3
Cog = X7V X5 Ci10 = X7 V X:

C3 = X2 V X1 Cs = X

C7 = X2 V X4

Cs = X4 V X5

Ci1 = X5 VX3 Ci2 = —X3

K = {{c1,¢c2,¢3,¢4},{Co, C10,C11,C12}, {C3,C4,C7,C8,C11,C12}}

+ Find MHS of K: E.g. {c4,Co}
« SAT(F \ {ca,C9})? Yes
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MHS approach for MaxSAT

C1 = Xg V X2 Co = Xg V X2
Cs = X V Xs Ce = X6 V X3
Cog = X7V X5 Ci10 = X7 V X:

C3 = X2 V X1 Cs = X

C7 = X2 V X4

Cs = X4 V X5

Ci1 = X5 VX3 Ci2 = —X3

K = {{c1,¢c2,¢3,¢4},{Co, C10,C11,C12}, {C3,C4,C7,C8,C11,C12}}

+ Find MHS of K: E.g. {c4,Co}
« SAT(F \ {ca,C9})? Yes

+ Terminate & return 2
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MaxSAT solving with SAT oracles - a sample

- A sample of recent algorithms:

Algorithm # Oracle Queries Reference
Linear search SU Exponential*** [8P10]
Binary search Linear* [FM06]
FM/WMSU1/WPM1 Exponential** [FM06, MPOS, MMSP09, ABLO9, ABGL12]
WPM2 Exponential** [ABL10, ABL13]
Bin-Core-Dis Linear (HMM11, MHM12]
Iterative MHS Exponential [DB11, DB13a, DB13b]

* O(logm) queries with SAT oracle, for (partial) unweighted MaxSAT

** Weighted case; depends on computed cores
*** On # bits of problem instance (due to weights)
- But also additional recent work:

- Progression iMm+14]
- Soft cardinality constraints (OLL) [MDM14, MIM14]
- Recent implementation (RC2, using PySAT) won 2018 MaxSAT Evaluation

+ MaxSAT resolution INB14]
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Flagship applications

+ Bounded (& unbounded) model checking

« Automated planning

- Software model checking
- Equivalence checking

- Package management

+ Design debugging

« Haplotyping
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PySAT - SAT for all

[IMMm18

cardenc solvers formula
module module module

O O O O o

OO OO O
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PySAT - SAT for all

[IMm18]

cardenc solvers formula
module module module
————————————————— PySAT modules |-----------------~

- Open source, available on github
« URL: https://pysathg.github.io/
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PySAT - SAT for all

[IMm18]

cardenc solvers formula
module module module

O O O O o

OO OO O

- Open source, available on github
« URL: https://pysathg.github.io/
« Comprehensive list of SAT solvers
- Comprehensive list of cardinality encodings
« Fairly comprehensive documentation

- Several use cases
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Recent applications

« Two-level logic minimization with SAT {1p1s]
+ Reimplementation of Quine-McCluskey with SAT oracles
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Recent applications

« Two-level logic minimization with SAT {1p1s]
+ Reimplementation of Quine-McCluskey with SAT oracles

+ Explainable decision sets [1PNME]
+ Computation of smallest decision sets (rules)

+ Smallest (explainable) decision trees [ntPwe]
- Computation of smallest decision trees

« Abduction-based explanations for ML models [INMs19]
+ On-demand extraction of explanations for any ML model
+ More applications in XAl (more later)

« Lots of other applications, by us & by others
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SAT (& SMT) meet(s) eXplainable Al

Decision
Sets

Interpretable
Models

Decision
Trees

XAl

Neural
Networks

Black-Box
Models (w/
Abduction)

Boosted
Trees

Binarized
Neural
Networks
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Smallest decision trees - encoding sizes in bytes

[NIPM18]

Model ‘ Weather ‘ Mouse ‘ Cancer ‘ Car ‘ Income

CP'09*

27k | 35M | 92G | 842M | 3546
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Smallest decision trees - encoding sizes in bytes

[NIPM18]

Model ‘ Weather ‘ Mouse ‘ Cancer ‘ Car ‘ Income

CP'09* 27K 3.5M 92G 842M | 354G
IJCAI'18 190K 1.2M 5.2M 4.1IM 1.2G
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Abduction-based explanations

[INMS19]

- Positive:
+ General approach, applicable to any ML model
represented as a set of constraints
- E.g. ability to explain predictions of NNs

- Negative:

+ NN sizes are fairly small, i.e. tens of neurons
+ Best results with ILP-based approach

+ SMT/SAT models currently ineffective
+ But, algorithms inspired SAT-based solutions
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Abduction-based explanations

[INMS19]

- Positive:
+ General approach, applicable to any ML model
represented as a set of constraints
- E.g. ability to explain predictions of NNs

- Negative:
+ NN sizes are fairly small, i.e. tens of neurons
+ Best results with ILP-based approach

+ SMT/SAT models currently ineffective
+ But, algorithms inspired SAT-based solutions

+ So, where is SAT used?
« Computing primes, with SAT-inspired algorithms
+ In general, oracle-based problem solving
- Modeling NNs & boosted trees with SMT
+ Modeling BNNs with SAT

53/57



Machine learning vs. automated reasoning

heuristics; portfolios;

abstractions; tactics; ... Improve AR

(Efficiency)

Exploit ML
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Machine learning vs. automated reasoning

heuristics; portfolios;
abstractions; tactics; ...

. Improve AR
Exploit ML (Efficiency)
verification; synthesis;
explanations; ...

Exploit AR Improve ML

(Robustness)
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Machine learning vs. automated reasoning

heuristics; portfolios;
abstractions; tactics; ...

. Improve AR
Exploit ML AmereF : (Efficiency)
simplify system design
verification; synthesis;
explanations; ...

Exploit AR Improve ML

build trust; debug; (Robustness)

aid decision making
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Is there a future for SAT? Yes!

- Better solvers (always!) needed
+ Even if pace of improvement is modest

 SAT-based problem solving is here to stay
+ And with high-profile applications, e.g. XAl

« Novel modular reasoning insights are the part of the future
« A prediction:
The future will see widespread uses of SAT-enabled modular reasoners
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