
On-the-fly cardinality detection

Jan Elffers

KTH Royal Institute of Technology

July 8, 2019

Joint work with Jakob Nordström

1 / 20



The Boolean satisfiability (SAT) problem

Can variables x1, . . . , xn be assigned true/false to satisfy
clauses C1, . . . ,Cm?

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

(x i denotes negation of xi )

I Many problems can be encoded as SAT: planning and
scheduling, hardware and software verification, combinatorial
problems.

I Dramatic progress on conflict-driven clause learning (CDCL)
solvers in last 2 decades [MS96, BS97, MMZ+01].

I Exist simple problems, e.g. involving counting, on which
CDCL solvers fail.

2 / 20



The pseudo-Boolean satisfiability (PB SAT) problem

I Pseudo-Boolean (PB) linear constraints are stronger than
clauses

Compare

x1 + x2 + x3 + x4 + x5 + x6 ≥ 5

and

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x4) ∧ (x1 ∨ x5) ∧ (x1 ∨ x6)

∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x2 ∨ x5) ∧ (x2 ∨ x6)

∧ (x3 ∨ x4) ∧ (x3 ∨ x5) ∧ (x3 ∨ x6)

∧ (x4 ∨ x5) ∧ (x4 ∨ x6)

∧ (x5 ∨ x6)

I And PB reasoning exponentially more powerful in theory

I But PB solvers fail on CNFs: no stronger than CDCL

3 / 20



Our contribution

Extend our PB solver RoundingSat with cardinality detection.

1. Extend short clauses to cardinality constraints.
For example, if all these clauses are present

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x4) ∧ (x1 ∨ x5) ∧ (x1 ∨ x6)

∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x2 ∨ x5) ∧ (x2 ∨ x6)

∧ (x3 ∨ x4) ∧ (x3 ∨ x5) ∧ (x3 ∨ x6)

∧ (x4 ∨ x5) ∧ (x4 ∨ x6)

∧ (x5 ∨ x6)

then x1 ∨ x2 can be extended to

x1 + x2 + x3 + x4 + x5 + x6 ≥ 5

2. Generate new clauses to be used in cardinality detection.

4 / 20



Our contribution

Extend our PB solver RoundingSat with cardinality detection.

1. Extend short clauses to cardinality constraints.
For example, if all these clauses are present

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x4) ∧ (x1 ∨ x5) ∧ (x1 ∨ x6)

∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x2 ∨ x5) ∧ (x2 ∨ x6)

∧ (x3 ∨ x4) ∧ (x3 ∨ x5) ∧ (x3 ∨ x6)

∧ (x4 ∨ x5) ∧ (x4 ∨ x6)

∧ (x5 ∨ x6)

then x1 ∨ x2 can be extended to

x1 + x2 + x3 + x4 + x5 + x6 ≥ 5

2. Generate new clauses to be used in cardinality detection.

4 / 20



Our contribution

Extend our PB solver RoundingSat with cardinality detection.

1. Extend short clauses to cardinality constraints.
For example, if all these clauses are present

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x4) ∧ (x1 ∨ x5) ∧ (x1 ∨ x6)

∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x2 ∨ x5) ∧ (x2 ∨ x6)

∧ (x3 ∨ x4) ∧ (x3 ∨ x5) ∧ (x3 ∨ x6)

∧ (x4 ∨ x5) ∧ (x4 ∨ x6)

∧ (x5 ∨ x6)

then x1 ∨ x2 can be extended to

x1 + x2 + x3 + x4 + x5 + x6 ≥ 5

2. Generate new clauses to be used in cardinality detection.

4 / 20



Our contribution

Extend our PB solver RoundingSat with cardinality detection.

1. Extend short clauses to cardinality constraints.
For example, if all these clauses are present

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x4) ∧ (x1 ∨ x5) ∧ (x1 ∨ x6)

∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x2 ∨ x5) ∧ (x2 ∨ x6)

∧ (x3 ∨ x4) ∧ (x3 ∨ x5) ∧ (x3 ∨ x6)

∧ (x4 ∨ x5) ∧ (x4 ∨ x6)

∧ (x5 ∨ x6)

then x1 ∨ x2 can be extended to

x1 + x2 + x3 + x4 + x5 + x6 ≥ 5

2. Generate new clauses to be used in cardinality detection.

4 / 20



Our contribution

Extend our PB solver RoundingSat with cardinality detection.

1. Extend short clauses to cardinality constraints.
For example, if all these clauses are present

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x4) ∧ (x1 ∨ x5) ∧ (x1 ∨ x6)

∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x2 ∨ x5) ∧ (x2 ∨ x6)

∧ (x3 ∨ x4) ∧ (x3 ∨ x5) ∧ (x3 ∨ x6)

∧ (x4 ∨ x5) ∧ (x4 ∨ x6)

∧ (x5 ∨ x6)

then x1 ∨ x2 can be extended to

x1 + x2 + x3 + x4 + x5 + x6 ≥ 5

2. Generate new clauses to be used in cardinality detection.

4 / 20



Overview

1. If all necessary short clauses present in the formula,
reconstruct cardinality constraints. (standard)

2. For the general case, also find short clauses to be used as
building blocks. (new)

5 / 20



Overview

1. If all necessary short clauses present in the formula,
reconstruct cardinality constraints. (standard)

2. For the general case, also find short clauses to be used as
building blocks. (new)

5 / 20



Reconstructing cardinality constraints

Example

F = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x4) ∧ (x2 ∨ x4)

Starting from (x1 ∨ x2),

I Try to add x3. (x1 ∨ x3) and (x2 ∨ x3) present, so add x3 to
get x1 + x2 + x3 ≥ 2.

I Then, try to add x4. (x3 ∨ x4) not present, so don’t add.

Run a greedy algorithm doing this.

6 / 20



Reconstructing cardinality constraints

Example

F = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x4) ∧ (x2 ∨ x4)

Starting from (x1 ∨ x2),

I Try to add x3. (x1 ∨ x3) and (x2 ∨ x3) present, so add x3 to
get x1 + x2 + x3 ≥ 2.

I Then, try to add x4. (x3 ∨ x4) not present, so don’t add.

Run a greedy algorithm doing this.

6 / 20



Reconstructing cardinality constraints

Example

F = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x4) ∧ (x2 ∨ x4)

Starting from (x1 ∨ x2),

I Try to add x3. (x1 ∨ x3) and (x2 ∨ x3) present, so add x3 to
get x1 + x2 + x3 ≥ 2.

I Then, try to add x4. (x3 ∨ x4) not present, so don’t add.

Run a greedy algorithm doing this.

6 / 20



Reconstructing cardinality constraints

Example

F = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x4) ∧ (x2 ∨ x4)

Starting from (x1 ∨ x2),

I Try to add x3. (x1 ∨ x3) and (x2 ∨ x3) present, so add x3 to
get x1 + x2 + x3 ≥ 2.

I Then, try to add x4. (x3 ∨ x4) not present, so don’t add.

Run a greedy algorithm doing this.

6 / 20



Overview

1. If all necessary short clauses present in the formula,
reconstruct cardinality constraints. (standard)

2. For the general case, also find short clauses to be used as
building blocks. (new)

7 / 20



Overview

1. If all necessary short clauses present in the formula,
reconstruct cardinality constraints. (standard)

2. For the general case, also find short clauses to be used
as building blocks. (new)

7 / 20



Learning new binary clauses

Clause learning in CDCL will not learn all implied binary clauses.

Example

Let F = (x1 ∨ y1) ∧ (x2 ∨ y1).
Then x1 → y1 → x2 and x2 → y1 → x1.
CDCL cannot learn x1 ∨ x2, because x1 and x2 would have the
same decision level, contradicting UIP property.

To learn those clauses, one can do

I Preprocessing: probing (semantic cardinality detection)
approach in [Biere et al., 2014]

I During the search: find cuts in the implication graph of unit
propagation [our work]

8 / 20



Learning new binary clauses

Clause learning in CDCL will not learn all implied binary clauses.

Example

Let F = (x1 ∨ y1) ∧ (x2 ∨ y1).
Then x1 → y1 → x2 and x2 → y1 → x1.
CDCL cannot learn x1 ∨ x2, because x1 and x2 would have the
same decision level, contradicting UIP property.

To learn those clauses, one can do

I Preprocessing: probing (semantic cardinality detection)
approach in [Biere et al., 2014]

I During the search: find cuts in the implication graph of unit
propagation [our work]

8 / 20



Probing

F = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x5) ∧ (x4 ∨ x5 ∨ x6)

I Set x1 to true. Run unit propagation.

x2, x3, x4, x5 and x6 propagate.
So learn (x1 ∨ xi ) for i = 2, . . . , 6.

I Repeat for all other literals (both polarities).
9 / 20



Probing

F = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x5) ∧ (x4 ∨ x5 ∨ x6)

I Set x1 to true. Run unit propagation.

x1

x2, x3, x4, x5 and x6 propagate.
So learn (x1 ∨ xi ) for i = 2, . . . , 6.

I Repeat for all other literals (both polarities).
9 / 20



Probing

F = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x5) ∧ (x4 ∨ x5 ∨ x6)

I Set x1 to true. Run unit propagation.

x1

x2

x2, x3, x4, x5 and x6 propagate.
So learn (x1 ∨ xi ) for i = 2, . . . , 6.

I Repeat for all other literals (both polarities).
9 / 20



Probing

F = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x5) ∧ (x4 ∨ x5 ∨ x6)

I Set x1 to true. Run unit propagation.

x1

x2

x3

x2, x3, x4, x5 and x6 propagate.
So learn (x1 ∨ xi ) for i = 2, . . . , 6.

I Repeat for all other literals (both polarities).
9 / 20



Probing

F = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x5) ∧ (x4 ∨ x5 ∨ x6)

I Set x1 to true. Run unit propagation.

x1

x2

x3

x4

x2, x3, x4, x5 and x6 propagate.
So learn (x1 ∨ xi ) for i = 2, . . . , 6.

I Repeat for all other literals (both polarities).
9 / 20



Probing

F = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x5) ∧ (x4 ∨ x5 ∨ x6)

I Set x1 to true. Run unit propagation.

x1

x2

x3

x4

x5

x2, x3, x4, x5 and x6 propagate.
So learn (x1 ∨ xi ) for i = 2, . . . , 6.

I Repeat for all other literals (both polarities).
9 / 20



Probing

F = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x5) ∧ (x4 ∨ x5 ∨ x6)

I Set x1 to true. Run unit propagation.

x1

x2

x3

x4

x5

x6

x2, x3, x4, x5 and x6 propagate.
So learn (x1 ∨ xi ) for i = 2, . . . , 6.

I Repeat for all other literals (both polarities).
9 / 20



Probing

F = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x5) ∧ (x4 ∨ x5 ∨ x6)

I Set x1 to true. Run unit propagation.

x1

x2

x3

x4

x5

x6

x2, x3, x4, x5 and x6 propagate.
So learn (x1 ∨ xi ) for i = 2, . . . , 6.

I Repeat for all other literals (both polarities).
9 / 20



Finding cuts in the implication graph

Compute all dominators for each literal in the implication graph.

F = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x5) ∧ (x4 ∨ x5 ∨ x6)

x1 dominates all other nodes, so learn (x1 ∨ xi ) for i = 2, . . . , 6.

10 / 20



Finding cuts in the implication graph

Compute all dominators for each literal in the implication graph.

F = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x5) ∧ (x4 ∨ x5 ∨ x6)

x1

x1 dominates all other nodes, so learn (x1 ∨ xi ) for i = 2, . . . , 6.

10 / 20



Finding cuts in the implication graph

Compute all dominators for each literal in the implication graph.

F = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x5) ∧ (x4 ∨ x5 ∨ x6)

x1

x2 x1

x1 dominates all other nodes, so learn (x1 ∨ xi ) for i = 2, . . . , 6.

10 / 20



Finding cuts in the implication graph

Compute all dominators for each literal in the implication graph.

F = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x5) ∧ (x4 ∨ x5 ∨ x6)

x1

x2 x1

x3 x1

x1 dominates all other nodes, so learn (x1 ∨ xi ) for i = 2, . . . , 6.

10 / 20



Finding cuts in the implication graph

Compute all dominators for each literal in the implication graph.

F = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x5) ∧ (x4 ∨ x5 ∨ x6)

x1

x2 x1

x3 x1

x4 x1, x2

x1 dominates all other nodes, so learn (x1 ∨ xi ) for i = 2, . . . , 6.

10 / 20



Finding cuts in the implication graph

Compute all dominators for each literal in the implication graph.

F = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x5) ∧ (x4 ∨ x5 ∨ x6)

x1

x2 x1

x3 x1

x4 x1, x2

x5 x1, x3

x1 dominates all other nodes, so learn (x1 ∨ xi ) for i = 2, . . . , 6.

10 / 20



Finding cuts in the implication graph

Compute all dominators for each literal in the implication graph.

F = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x5) ∧ (x4 ∨ x5 ∨ x6)

x1

x2 x1

x3 x1

x4 x1, x2

x5 x1, x3

x6 x1

x1 dominates all other nodes, so learn (x1 ∨ xi ) for i = 2, . . . , 6.

10 / 20



Finding cuts in the implication graph

Compute all dominators for each literal in the implication graph.

F = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x4) ∧ (x3 ∨ x5) ∧ (x4 ∨ x5 ∨ x6)

y x1

x2

x3 x1

x4 x2

x5 x1, x3

x6

Suppose had decision y preceding x1, which is part of the reason of
x2. In this case, x1 no longer dominates x2, x4 and x6.

11 / 20



Overall procedure

I During unit propagation, clauses are generated from cuts in
the implication graph.
These clauses are stored permanently in a database.

I During conflict analysis, short clauses appearing as reasons are
mapped to cardinality constraints using this database.

12 / 20



The limitation of probing

Suppose have clauses (x1 ∨ x2 ∨ y) ∧ (x1 ∨ x2 ∨ y).

I Probing does not discover x1 ∨ x2.

I But clause learning might lead to propagation x1 → x2 (and
x2 → x1), which can be discovered by our method.

13 / 20



Cardinality detection beyond binary clauses

I Dominators are single node cuts in the implication graph.
Can extend the idea to detect small-size cuts (corresponds to
short clauses).
Detecting larger cuts → higher overhead.

I Non-binary clauses can also be transformed to cardinality
constraints: similar to example at beginning of this talk.

14 / 20



Experimental evaluation

Compare our approach against the probing approach in [Biere et
al., 2014] (using Sat4j + Riss).

I Sat4j is the pseudo-Boolean solver.

I Riss is the preprocessor to generate cardinality constraints.

Experiments:

I Pigeon hole principle with various encodings. [Biere et al.,
2014]

I Two pigeons per hole principle with various encodings. (our
proposal)

I Even colouring formula. (our proposal)

15 / 20



Pigeonhole principle

Table legend: #solved (PAR2 score in minutes).

Preprocessor #inst. Syntactic(Riss) Probe(Riss) no
Solver Sat4jCP Sat4jCP RoundingSat-Card

Binomial 14 13 (36m) 7 (211m) 14 (20m)
Binary 14 2 (372m) 6 (241m) 7 (212m)

Sequential 14 14 (2m) 11 (91m) 13 (56m)
Product 14 11 (109m) 12 (63m) 7 (213m)

Commander 14 8 (181m) 12 (61m) 7 (212m)
Ladder 14 11 (101m) 10 (127m) 12 (85m)

16 / 20



Two pigeons per hole principle

Benchmark encoding that 2n − 1 pigeons do not fit into n − 1
holes with capacity 2.

We use three encodings

I Sorter networks.

I BDDs.

I Adder networks.

All are generated by Minisat+.

17 / 20



Two pigeons per hole principle

4 6 8 10 12 14
Number of holes + 1

0

250

500

750

1000

1250

1500

1750
ru

nt
im

e 
(s

)
Sorter / Synt.
BDD / Synt.
Adder / Synt.
Sorter / Probe
BDD / Probe
Adder / Probe
Sorter / RSCard
BDD / RSCard
Adder / RSCard

17 / 20



Comparison of approaches on pigeonhole problems

I If CNF encoding arc-consistent∗, then preprocessing could
work in theory.

I Otherwise, need our approach.

∗ arc-consistent: CNF encoding gives all unit implications that PB
problem gives (before any learning).

18 / 20



Even colouring formula [Markström, 2006]
Unsatisfiable formula defined on undirected graphs.

Graphs are random 4-regular with a split edge.

0 200 400 600 800
Number of vertices

0

1000

2000

3000

4000

5000

ru
nt

im
e 

(s
)

OPB, Sat4jSem
CNF, Sat4jSem
OPB, RoundingSat
OPB, RSCard
CNF, RSCard

19 / 20



Conclusion

We proposed on-the-fly cardinality detection.

I Reduces the number of reasoning steps if there are implied
cardinality constraints.

I Can discover at-most-k constraints for small k.

I Competitive with preprocessing methods and often better.

20 / 20



References I

Roberto J. Bayardo Jr. and Robert Schrag.
Using CSP look-back techniques to solve real-world SAT
instances.
In Proceedings of the 14th National Conference on Artificial
Intelligence (AAAI ’97), pages 203–208, July 1997.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao,
Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient SAT solver.
In Proceedings of the 38th Design Automation Conference
(DAC ’01), pages 530–535, June 2001.

João P. Marques-Silva and Karem A. Sakallah.
GRASP—a new search algorithm for satisfiability.
In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design (ICCAD ’96), pages 220–227,
November 1996.

21 / 20


