

Compiling Finite Domain Constraints
to SAT with BEE

Michael Codish

Department of Computer Science
Ben Gurion University
Beer-Sheva , Israel

Joint work: Yoav Fekete & Amit Metodi

In Collaboration with: Vitaly Lagoon & Peter Stuckey

It is all about: Solving hard problems
via SAT encodings

Problem
(hard)

Solution

d
ire

ct

CNF

SAT ’ing
Assignment

encoding

decoding

sa
t solving

hype!

was born (*) with two objectives:

Ben-Gurion

Equi-propagation

Encoder

Amit Metodi, Michael Codish,

Vitaly Lagoon, Peter J. Stuckey:

Boolean Equi-propagation for

Optimized SAT Encoding. CP

2011: 621-636

(*)

• Facilitate the (user) process of encoding a
(constraint) problem to CNF

• Compile constraint models to CNF while applying
optimizations in order to generate (usually)
smaller and better CNF formulas.

Encoding modeling

Solution

d
ire

ct

SAT ’ing
Assignment

decoding

sa
t solving

hype!

Problem
(hard) CNF

Constraint
Model

Outline

• Introduction

• BEE in a nutshell

• Order encoding (representing integers)

• Equi-propagation (ad-hoc)

• The “new” stuff

• Complete Equi-Propagation

• Cardinality Constraints in BEE

• The binary extension of BEE

Encoding modeling Problem
(hard) CNF

Constraint
Model

Example: encoding Sudoku

Problem
(hard) CNF encoding

Constraint
Model modeling

Encoding modeling Problem
(hard) CNF

Constraint
Model

 Constraint Model C1 C2 C3 Cn
e
nc

od
e

e
nc

od
e

e
nc

od
e

e
nc

od
e

CNF
si
m
pl
if
ic
a
ti
on

The Usual Approach

Tools such as: SatELite, ReVivAl
Based on Unit Propagation
and Resolution.

 Constraint Model C1 C2 C3 Cn
e
nc

od
e

e
nc

od
e

e
nc

od
e

e
nc

od
e

CNF
si
m
pl
if
ic
a
ti
on

The Usual Approach

Problems:
• Word vrs bit level
• Large CNF

Problem
(hard) CNF encoding

Constraint
Model modeling

user compiler

 The CNF you want to optimize
did not fall out of the sky

 Optimize it while

generating it

Let the constraint model
drive the CNF optimization

 Constraint Model C1 C2 C3 Cn
e
nc

od
e

CNF

The BEE Approach

e
nc

od
e

e
nc

od
e

e
nc

od
e

CNF CNF CNF

 Constraint Model C1 C2 C3 Cn
e
nc

od
e

CNF

The BEE Approach

e
nc

od
e

e
nc

od
e

e
nc

od
e

CNF CNF CNF

up
d
a
te

 up
d
a
te

up
d
a
te

up
d
a
te

bool_array_sum_eq(
 [A,B,C,D,E,F,G],3)
bool_array_sum_eq(
 [1,B,C,-E,E,F,G],3)
bool_array_sum_eq(
 [B,C, F,G],1)

A=1, D= -E

Problem
(hard) CNF encoding

Constraint
Model modeling

Equi-propagate Partial evaluate

1. view each “single” constraint as a Boolean formula
2. derive (“all”) implied equalities between literals and constants
3. apply them to simplify all constraints

more powerful reasoning but on
smaller CNF portions

of the form X=L where L
is a constant or a literal:
X=Y, X= -Y, X=0, X=1

Equi-propagation is the process
of inferring equations implied
by a “small chunck “ of
constraints.

TWO DESIGN CHOICES

Representing numbers

Order encoding (unary)

X = [x1,…,xi,…,xn]

xi ↔ (X ≥ i)

(X = 3) = [1,1,1,0,0]

X
i j X ≥ i X < j
1 0

Lots of equi-propagation

X u v

i

The Encoding to SAT needs NO
Clauses. It is obtained by unification

[x1,x2,x3] + [y1,y2,y3] = 3 x1 = -y3
x2 = -y2
x3 = -y1

1

3

2

TWO DESIGN CHOICES

Implementing Equi-Propagation

1. Using BDD’s.

• Prohibitive for global constraints.

• Complete

2. Using SAT (on small groups of constraints)

• In practice, surprisingly, “not slow”

• Complete

3. Ad-Hoc rules (per constraint type)

• Fast, precise in practice

• Incomplete

Ad-Hoc Rules: int_plus

Equi-Propagation

 Partial Evaluation

Outline

• Introduction

• BEE in a nutshell

• The “new” stuff

• Complete Equi-Propagation

• Cardinality Constraints in BEE

• The binary extension of BEE

http://amit.metodi.me/research/bee/

Complete Equi-propagation

 Constraint Model C1 C2 C3 Cn

CNF CNF CNF CNF

designate specific sets of constraints
for complete equi-propagation (using a
SAT solver)

Example: Kakuro

Example: Kakuro

CEP

CEP is similar to Backbones

Backbones are about
detecting variables which
take fixed values in all
solutions

CEP is also about detecting
equations between variables
which take fixed values in all
solutions

Backbones using SAT

iteration #1: sat()

iteration #2:

sat() (& diff)

iteration #3: sat()
(and flip at least one
that didn’t flip yet)

At most n sat calls;
Incremental;
Only the last call is unsat.

Assume  with
n=5 variables

Backbones for Equality (CEP)

Essentially the same; Define

and then apply a backbone algorithm

But, we have added O(n2) new variables (???)

iteration #1 and #2: sat()
(two different assignments

Backbones for Equality (CEP)

iteration #3: sat()
(and flip at least one
that didn’t flip yet)

iteration #4: sat()
(and flip at least one
that didn’t flip yet)

Backbones for Equality (CEP)

n2

?

Theorem

Outline

• Introduction

• BEE in a nutshell

• The “new” stuff

• Complete Equi-Propagation

• Cardinality Constraints in BEE

• The binary extension of BEE

http://amit.metodi.me/research/bee/

Cardinality Constraints

BDD like structure (symbolic) 1

sorting networks (unary) 2

network of adders (binary) 3

b
e
tt

e
r

 p
ro

pa
ga

ti
on

sm
alle

r C
N

F
 size

Sat encoding – cardinality constraints

4 ix

sorter



x1
x2
x3
x4

x8

y1
y2
y3
y4

x5
x6
x7

y5
y6
y7
y8

y5

X Y
bits

unary
number (OE)

4 ix

 y4

sorting networks (defined recursively)

sorter

1

sorter

2

m
e
rg

e
r

3

Many adapt this approach
applying Batcher's Odd Even
Sorting Network

defined recursively; so it
is all in the merger

The odd-even merger is
basically a unary adder and
consists of O(n log n)
“comparators”.

Another option is Parberry’s
“pairwise” sorting networks

Totalizers (same but with different merger)

sorter

sorter

 un
ar

y
ad

d
e
r

 A ≥ i & B ≥ j -> C ≥ i+j

 A ≤ i & B ≤ j -> C ≤ i+j

Totalizers: define the merger
with a direct encoding O(n2)
clauses

A

B

C

(direct) adders are larger than
mergers but have better
propagation properties

Hybrid

adders mergers

But, for small n, adders are
actually smaller than mergers

Anyway, the size penalty can
pay off (if under control)

(direct) adders are larger than
mergers but have better
propagation properties

While constructing, first use
mergers. Then, as things get
smaller, introduce adders

Experiments illustrating the advantage of
the hybrid approach:

Ignasi Abio, Robert Nieuwenhuis, Albert Oliveras,
Enric Rodriguez-Carbonell; A parametric approach

for smaller and better encodings of cardinality
constraints; CP 2013

bSettings.pl (for cardinality constraints)
/*

 Name: 'unaryAdderType'

 Constraint: 'int_plus'

 Possible values:

 'uadder' - (default) use O(N^2) encoding

 'merger' - decompose to comparators O(NlogN) encoding

 'hybrid' - hybrid approach:

 BEE will decide if to decompose like merger or

 encode like uadder - based on the generated CNF size.

*/

:- defineSetting(unaryAdderType,uadder).

/*

 Name: 'sumBitsDecompose'

 Constraint: 'bool_array_sum_op' / 'bool_array_pb_op'

 Possible values:

 'simple' - (default) divide and conquer technique

 'buckets' - split to buckets, sum each bucket

 and use linear constraints to sum buckets

 'pairwise' - pairwise sorting network

*/

:- defineSetting(sumBitsDecompose,simple).

Outline

• Introduction

• BEE in a nutshell

• The “new” stuff

• Complete Equi-Propagation

• Cardinality Constraints in BEE

• The binary extension of BEE

http://amit.metodi.me/research/bee/

Binary Extension of BEE

Bit Blasting is obvious; But it is more about
how the simplifications work

Where possible, blast into the unary core

unary sums

Binary Multiplication

Binary Multiplication (square)

equi propagation:

Binary Multiplication (square)

Conclusion

Encoding modeling Problem
(hard) CNF

Constraint
Model

• The “new” stuff

• Complete Equi-Propagation

• Cardinality Constraints in BEE

• The binary extension of BEE

