
Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

EagleUP: Solving Random 3-SAT
using SLS with Unit Propagation

Oliver Gableske1

1oliver.gableske@uni-ulm.de
Institute of Theoretical Computer Science

Ulm University
Germany

This is a joint work with Marijn Heule.

Pragmatics of SAT, 18.06.2011

1 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Outline

1 Introduction
Motivation and Goal of our Work

2 Preliminaries
SLS, Sparrow and Eagle
Unit Propagation, iUP, VAR and VAL

3 Enhancing SLS with iUP
General idea for combining SLS and iUP
The problem of combining SLS and iUP
Cool-down periods and the Cauchy probability distribution

4 EagleUP

5 Results of the Empirical Study

6 Conclusions and Future Work

2 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Motivation and Goal of our Work

Motivation

Design of a fast SAT Solver for random k-SAT
SLS approach has proven its worth
Combining UP and SLS has been successful on structures instances
SLS+UP: Does it also work for random ones?

Goal

Improve the performance of a given SLS solver on random instances
using UP

3 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Motivation and Goal of our Work

Motivation

Design of a fast SAT Solver for random k-SAT
SLS approach has proven its worth
Combining UP and SLS has been successful on structures instances
SLS+UP: Does it also work for random ones?

Goal

Improve the performance of a given SLS solver on random instances
using UP

3 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

SLS

Task: For a given 3-SAT formula F

with n variables, V = {x1, . . . , xn}
and m clauses, C = {c1, . . . , cm}

Find an assignment α : V → {0, 1}, such that F (α) = 1

To perform search, SLS solvers use

a total assignment α
an objective function f (number of unsatisfied clauses in F under α)

4 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

SLS

Task: For a given 3-SAT formula F

with n variables, V = {x1, . . . , xn}
and m clauses, C = {c1, . . . , cm}

Find an assignment α : V → {0, 1}, such that F (α) = 1
To perform search, SLS solvers use

a total assignment α
an objective function f (number of unsatisfied clauses in F under α)

4 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

SLS

SLS(3-CNF F , timeout t)
Randomly initialize α;
repeat

if F (α) = 1 then output satisfying assignment; terminate;
if ∃α′ ∈ Neighborhood(α): f(α′) ≤ f(α)
then //greedy mode

α := α′; //flip the variable that gives the best improvement
else //random mode

flip random variable according to some heuristic;
until timeout t is reached;
output unknown;

5 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Sparrow

Random mode requires a heuristic to decides what variable to flip

Sparrow heuristic [ABAF2010] has shown strong performance on
3-SAT

In random mode, at least one unsatisfied clause is available

Sparrow works as follows:

Pick one unsatisfied clause at random, ui = (xi1 ∨ . . . ∨ xik
)

For all the variables in ui, compute a probability p(xij ) to flip this
variable
Randomly pick a variable from ui according to the probability
distribution and flip it

6 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Sparrow

Random mode requires a heuristic to decides what variable to flip

Sparrow heuristic [ABAF2010] has shown strong performance on
3-SAT

In random mode, at least one unsatisfied clause is available

Sparrow works as follows:

Pick one unsatisfied clause at random, ui = (xi1 ∨ . . . ∨ xik
)

For all the variables in ui, compute a probability p(xij ) to flip this
variable
Randomly pick a variable from ui according to the probability
distribution and flip it

6 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Eagle

The SLS solver we want to improve is called Eagle
Eagle is a from scratch re-implementation of the Sparrow solver
[ABAF2010]
Eagle is a G2WSAT solver using the Sparrow heuristic in random
mode [OGMH2010]

The reason why we used it:

Eagle shows strong performance on random 3-SAT
Improving algorithms that are good by themselves is usually hard
Improving a strong SAT solver is a non-trivial task
Succeeding in this task is considered to be a useful result

7 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Eagle

The SLS solver we want to improve is called Eagle
Eagle is a from scratch re-implementation of the Sparrow solver
[ABAF2010]
Eagle is a G2WSAT solver using the Sparrow heuristic in random
mode [OGMH2010]

The reason why we used it:

Eagle shows strong performance on random 3-SAT
Improving algorithms that are good by themselves is usually hard
Improving a strong SAT solver is a non-trivial task
Succeeding in this task is considered to be a useful result

7 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

iUP

Unit Propagation (UP) is well known from the literature and of
fundamental importance to systematic search solvers
The iterated application of unit propagation until saturation is called
iUP

Problem: a plain 3-CNF formula does not contain unit clauses, so
what do we propagate?
Solution: if no unit clause is present, pick some variable and
propagate a value for it
Eventually, we get

unit clauses
the empty clause

iUP in general needs three things

A variable selection heuristic (VAR)
A value selection heuristic (VAL)
The information whether to stop once the empty clause is found
(conflictStopFlag)

8 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

iUP

Unit Propagation (UP) is well known from the literature and of
fundamental importance to systematic search solvers
The iterated application of unit propagation until saturation is called
iUP

Problem: a plain 3-CNF formula does not contain unit clauses, so
what do we propagate?
Solution: if no unit clause is present, pick some variable and
propagate a value for it
Eventually, we get

unit clauses
the empty clause

iUP in general needs three things

A variable selection heuristic (VAR)
A value selection heuristic (VAL)
The information whether to stop once the empty clause is found
(conflictStopFlag)

8 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

iUP

Unit Propagation (UP) is well known from the literature and of
fundamental importance to systematic search solvers
The iterated application of unit propagation until saturation is called
iUP

Problem: a plain 3-CNF formula does not contain unit clauses, so
what do we propagate?
Solution: if no unit clause is present, pick some variable and
propagate a value for it
Eventually, we get

unit clauses
the empty clause

iUP in general needs three things
A variable selection heuristic (VAR)
A value selection heuristic (VAL)
The information whether to stop once the empty clause is found
(conflictStopFlag)

8 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

iUP

iUP(3-CNF F , var. sel. heur. VAR, val. sel. heur. VAL, conflictStopFlag)
Initialize β:={};
repeat

if F (β) contains a unit clause
then assign the corresponding variable in β such that it satisfies the clause;
else use VAR to select a variable unassigned in β; use VAL to assign it in β;

until β assigns all variables or (conflictStopFlag and empty clause found)
return β;

In the following:

assignment of the SLS solver is called α
(partial) assignment of iUP is called β

9 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

iUP

iUP(3-CNF F , var. sel. heur. VAR, val. sel. heur. VAL, conflictStopFlag)
Initialize β:={};
repeat

if F (β) contains a unit clause
then assign the corresponding variable in β such that it satisfies the clause;
else use VAR to select a variable unassigned in β; use VAL to assign it in β;

until β assigns all variables or (conflictStopFlag and empty clause found)
return β;

In the following:

assignment of the SLS solver is called α
(partial) assignment of iUP is called β

9 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

General idea for combining SLS and iUP

Enhancing a given SLS solver with iUP requires answers to the following
questions:

1 When to perform iUP during the SLS solvers search?

2 How is the result β of iUP used?

3 What variable selection heuristic VAR should iUP use?

4 What value selection heuristic VAL should iUP use?

5 What happens if iUP detects the empty clause?

10 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

General idea for combining SLS and iUP

1 When to perform iUP during the SLS solvers search?

iUP is supposed to assist the SLS solver in its search

A comparatively obvious situation in which the SLS solver could use
assistance is when it cannot make any greedy flips

The most simple answer to the “When” question would be to call for
iUP instead of switching into random mode

Idea: Replace the random mode heuristic with a call to iUP.

11 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

General idea for combining SLS and iUP

2 How is the result β of iUP used?

The goal of the SLS solver in random mode would be to escape the
current “dead end” assignment α

This is usually done by using a variable selection heuristic like the
Sparrow heuristic

The resulting assignment β from the call to iUP must now be used to
fulfill this task

Idea: Compare α and β on all variables assigned in β. “Multi-flip” all
variables in α that have a different assignment in β, i.e. all variables that
iUP does not agree on.

12 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

General idea for combining SLS and iUP

3 What variable selection heuristic VAR should iUP use?

Research on (double)-look-ahead solvers suggests the use of a
recursive weighting heuristic

An example would be the RW heuristic [SMBWMH2010,DAMF2010]

RW provides you with an ordering θRW of the variables

Intuitively, θRW(xi) < θRW(xj) means variable xi has a stronger
impact on the formula than xj when it is assigned

A stronger variable impact results in more reduction in the formula

More reduction yields more unit clauses sooner

Idea: VAR picks the first variable according to θRW that is not yet assigned
in β.

13 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

General idea for combining SLS and iUP

4 What value selection heuristic VAL should iUP use?

Once iUP decided for a variable to assign next, it must decide what
value it wants to assign it to

The use of β is to help the SLS escape from a dead end α

β must somehow be related to the dead end assignment α

A straight forward idea is to have iUP try to reconstruct the SLS
solvers assignment α

Idea: VAL performs β(xi) = α(xi).

The only way that α and β do not agree on a variable is because of
unit propagation.

14 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

General idea for combining SLS and iUP

4 What value selection heuristic VAL should iUP use?

Once iUP decided for a variable to assign next, it must decide what
value it wants to assign it to

The use of β is to help the SLS escape from a dead end α

β must somehow be related to the dead end assignment α

A straight forward idea is to have iUP try to reconstruct the SLS
solvers assignment α

Idea: VAL performs β(xi) = α(xi).

The only way that α and β do not agree on a variable is because of
unit propagation.

14 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

General idea for combining SLS and iUP

5 What happens if iUP detects the empty clause?

As soon as the empty clause emerges, all further
propagations/assignments are meaningless

Idea: iUP stops as soon as the empty clause emerges
(conflictStopFlag := true).

15 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Putting it all together

SLSUP(k-CNF F , timeout t)
Randomly initialize α;
Compute θRW ;
repeat

if (F (α) = 1) then output satisfying assignment; terminate;
if ∃α′ ∈ Neighborhood(α): f(α′) ≤ f(α)
then //greedy mode

α := α′; //flip the variable that gives the best improvement
else //random mode

α :=iUP(F ,θRW ,α,true); //partially override α with β
until timeout t is reached;
output unknown;

16 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Putting it all together

Does this work?

No!

Why?

SLS encounters a dead end in about every third flip (3-SAT,
determined empirically)

The amount of variables iUP propagates is about 42% before it
discovers the empty clause

We use a static variable ordering and two almost identical α

The chance to get two different results from consecutive iUP calls is
practically non-existent

Calling iUP that often is a waste of computational time

Solution: Call iUP less often.

17 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Putting it all together

Does this work?

No!

Why?

SLS encounters a dead end in about every third flip (3-SAT,
determined empirically)

The amount of variables iUP propagates is about 42% before it
discovers the empty clause

We use a static variable ordering and two almost identical α

The chance to get two different results from consecutive iUP calls is
practically non-existent

Calling iUP that often is a waste of computational time

Solution: Call iUP less often.

17 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Putting it all together

Does this work?

No!

Why?

SLS encounters a dead end in about every third flip (3-SAT,
determined empirically)

The amount of variables iUP propagates is about 42% before it
discovers the empty clause

We use a static variable ordering and two almost identical α

The chance to get two different results from consecutive iUP calls is
practically non-existent

Calling iUP that often is a waste of computational time

Solution: Call iUP less often.

17 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Putting it all together

Does this work?

No!

Why?

SLS encounters a dead end in about every third flip (3-SAT,
determined empirically)

The amount of variables iUP propagates is about 42% before it
discovers the empty clause

We use a static variable ordering and two almost identical α

The chance to get two different results from consecutive iUP calls is
practically non-existent

Calling iUP that often is a waste of computational time

Solution: Call iUP less often.

17 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Cool-down periods

Straight forward approach for calling iUP less often:

manually increase the amount of flips that have to pass between to
consecutive calls of iUP
these intervals of flips in between two iUP calls are called cool-down
periods c

How long should these cool-down periods be?

Fixed values will not work
Pick cool-down periods randomly from a given interval

What does the interval look like? [cmin, cmax]
What distribution is used for picking values from that interval?

18 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Cool-down periods

Straight forward approach for calling iUP less often:

manually increase the amount of flips that have to pass between to
consecutive calls of iUP
these intervals of flips in between two iUP calls are called cool-down
periods c

How long should these cool-down periods be?

Fixed values will not work
Pick cool-down periods randomly from a given interval

What does the interval look like? [cmin, cmax]
What distribution is used for picking values from that interval?

18 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Cool-down periods

Straight forward approach for calling iUP less often:

manually increase the amount of flips that have to pass between to
consecutive calls of iUP
these intervals of flips in between two iUP calls are called cool-down
periods c

How long should these cool-down periods be?

Fixed values will not work
Pick cool-down periods randomly from a given interval

What does the interval look like? [cmin, cmax]
What distribution is used for picking values from that interval?

18 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Cool-down periods

Straight forward approach for calling iUP less often:

manually increase the amount of flips that have to pass between to
consecutive calls of iUP
these intervals of flips in between two iUP calls are called cool-down
periods c

How long should these cool-down periods be?

Fixed values will not work
Pick cool-down periods randomly from a given interval

What does the interval look like? [cmin, cmax]
What distribution is used for picking values from that interval?

18 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Cauchy distribution

Empirical tests indicate, that the cool-down periods should be picked from
the interval [0, 2.7n]. But what about the distribution?

The Cauchy distribution is defined by its probability density function
(PDF):

c : R 7→ R, c(z) =
1
π
· γ

γ2 + (z − ω)2

Its cumulative distribution function (CDF) is

C : R 7→ R, C(z) = P (Z < z) =
1
2

+
1
π
· arctan

(
z − ω
γ

)
.

with ω := 2n and γ = 1500.
The general idea is: after every call to iUP

pick a ∈ [0, 1) uniformly at random

compute c = bmin{z|C(z) ≥ a}c

19 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Cauchy distribution

Empirical tests indicate, that the cool-down periods should be picked from
the interval [0, 2.7n]. But what about the distribution?
The Cauchy distribution is defined by its probability density function
(PDF):

c : R 7→ R, c(z) =
1
π
· γ

γ2 + (z − ω)2

Its cumulative distribution function (CDF) is

C : R 7→ R, C(z) = P (Z < z) =
1
2

+
1
π
· arctan

(
z − ω
γ

)
.

with ω := 2n and γ = 1500.

The general idea is: after every call to iUP

pick a ∈ [0, 1) uniformly at random

compute c = bmin{z|C(z) ≥ a}c

19 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Cauchy distribution

Empirical tests indicate, that the cool-down periods should be picked from
the interval [0, 2.7n]. But what about the distribution?
The Cauchy distribution is defined by its probability density function
(PDF):

c : R 7→ R, c(z) =
1
π
· γ

γ2 + (z − ω)2

Its cumulative distribution function (CDF) is

C : R 7→ R, C(z) = P (Z < z) =
1
2

+
1
π
· arctan

(
z − ω
γ

)
.

with ω := 2n and γ = 1500.
The general idea is: after every call to iUP

pick a ∈ [0, 1) uniformly at random

compute c = bmin{z|C(z) ≥ a}c

19 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Cauchy distribution

Given a formula F with 26000 variables.

0 2n 2.7n
0.0

0.5

1.0

n=26000, ω=52000, γ=1500

z

CDF C(z)

20 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Cauchy distribution

Given a formula F with 26000 variables.

0 2n 2.7n
0.0

0.5

1.0

n=26000, ω=52000, γ=1500

z

CDF C(z)

a=0.9

new c
(ap. 56400)

21 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Again, putting it all together

EagleUP(k-CNF F , timeout t)
Randomly initialize α;
Compute θRW ;
Compute Cauchy CDF C(z), z ∈ [0, 2.7n], ω := 2n, γ := 1500, c = ω;
flips:=0; lastIUPcall:=0;
repeat

if (F (α) = 1) output satisfying assignment; terminate;
if ∃α′ ∈ Neighborhood(α): f(α′) ≤ f(α)
then //greedy mode

α := α′; flips++;
else //random mode

if flips > lastIUPcall + c

then //do iUP

α :=iUP(F ,θRW ,α,true); //partially override α with β
lastIUPcall=flips;
randomly pick a ∈ [0, 1) and set c := min{z|C(Z) ≥ a};

else //do Sparrow
use Sparrow heuristic to flip a variable; flips++;

until timeout t is reached;
output unknown;

22 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Results of the Empirical Study

This part of the empirical study consists of 600 3-SAT formulas

of sizes 20000 variables to 30000 variables (100 each, 50 runs each)

with a ratio of 4.2

20000
0

22000 24000 26000 28000 30000

Eagle
EagleUP

420

avg. run-
time [s]

n

Speed-up[%]
21.2 18.7 22.4 16.9 15.4 16.3

Check http://edacc2.informatik.uni-ulm.de/EDACC3/index

23 / 25

http://edacc2.informatik.uni-ulm.de/EDACC3/index


Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Conclusions and Future Work

Conclusions:

We provided a scheme to combine SLS and UP to gain speed-ups on
random 3-SAT formulas

The usage of cool-down periods is of vital importance

Future Work:

Why does the Cauchy distribution work? Is there any other
Distribution that gives better results?

Why is the possibility to have short/long cool-down periods so
important?

0 2n 2.7n
0.0

0.5

1.0

n=26000, ω=52000, γ=1500

z

CDF C(z)

a=0.9

new c
(ap. 56400)

24 / 25



Introduction Preliminaries Enhancing SLS with iUP EagleUP Results of the Empirical Study Conclusions and Future Work

Thanks

Thank you for your attention!

Questions?

25 / 25



Additional slides Bibliography

Empirical study

Part A: 600 random 3-CNF formulas, 20000 . . . 30000 var., ratio 4.2
Part B: 1300 random 3-CNF formulas, 26000 var., ratios 4.14 . . . 4.24

Solver

v20,000, r4.2

avg. run
time [s]

avg. std.
dev. [s]

succ.
rate [%]

v22,000, r4.2 v24,000, r4.2
TNM
Eagle
EagleUP

v26,000, r4.2 v28,000, r4.2 v30,000, r4.2
TNM
Eagle
EagleUP

708.09
164.71
129.76

389.61
138.51
97.81

77.90
99.70
99.72

899.15
209.47
170.13

434.65
173.56
129.28

68.34
99.70
99.96

899.64
279.40
216.64

401.62
213.44
155.78

58.00
98.42
99.28

1017.95
297.37
247.07

374.88
229.84
185.92

49.90
97.64
98.18

1062.19
318.93
269.73

383.74
234.06
190.01

47.86
97.70
98.76

1192.53
443.45
371.05

314.95
310.29
261.43

30.32
95.82
97.94

speed
up [%]

76.7
21.2

76.7
18.7

68.9
22.4

70.7
16.9

69.9
15.4

62.8
16.3

Part A avg. run
time [s]

avg. std.
dev. [s]

succ.
rate [%]

speed
up [%]

avg. run
time [s]

avg. std.
dev. [s]

succ.
rate [%]

speed
up [%]

Part B
Solver

r4.14

avg. run
time [s]

Eagle
EagleUP

9.36
8.75

speed
up [%]

6.5

r4.16

avg. run
time [s]

29.85
26.53

speed
up [%]

11.1

r4.18

avg. run
time [s]

94.97
79.24

speed
up [%]

16.6

r4.20

avg. run
time [s]

297.37
247.07

speed
up [%]

16.9

r4.22

avg. run
time [s]

763.49
712.04

speed
up [%]

6.7

r4.24*

avg. run
time [s]

 1107.28
1043.27

speed
up [%]

5.7

Results for Part A and B suggest superiority of EagleUP over Eagle.

1 / 2



Additional slides Bibliography

Bibliography

ABAF2010 Balint, A., Fröhlich, A.: Improving Stochastic Local
Search for SAT with a New Probability Distribution. In SAT’10,
LNCS 6175:10-16. Springer 2010.

OGMH2011 Gableske, O., Heule, M.J.H.: Solving Random 3-SAT
using SLS with Unit Propagation. PoS Workshop at SAT’11, 2011.

SMBWHM2010 Mijnders, S., De Wilde, B., Heule, M.J.H.: Symbiosis
of search and heuristics for random 3-SAT. In LaSh’10, 2010.

DAMF2010 Athanasiou, D., Fernandez, M.A.: Recursive Weight
Heuristic for Random k-SAT. Technical report from Delft University.
http://www.st.ewi.tudelft.nl/sat/reports/
RecursiveWeightHeurKSAT.pdf, 2010.

2 / 2

http://www.st.ewi.tudelft.nl/sat/reports/RecursiveWeightHeurKSAT.pdf
http://www.st.ewi.tudelft.nl/sat/reports/RecursiveWeightHeurKSAT.pdf

	Introduction
	Motivation and Goal of our Work

	Preliminaries
	SLS, Sparrow and Eagle
	Unit Propagation, iUP, VAR and VAL

	Enhancing SLS with iUP
	General idea for combining SLS and iUP
	The problem of combining SLS and iUP
	Cool-down periods and the Cauchy probability distribution

	EagleUP
	

	Results of the Empirical Study
	

	Conclusions and Future Work
	
	

	Appendix
	Additional slides
	Bibliography


