
Controlling a Solver Execution:
the runsolver Tool

Olivier ROUSSEL

CRIL - CNRS UMR 8188

roussel@cril.univ-artois.fr
http://www.cril.univ-artois.fr/∼roussel/runsolver/

Controlling a Solver Execution: the runsolver Tool 1



Outline

The goal
The main problem
First attempts (2005)
A better solution (2006 – today)
Impact on the solver

Controlling a Solver Execution: the runsolver Tool 2



The goal

When one is experimenting with a solver, it is useful to:
limit the resources consumed by the solver

time (obviously!)
memory (to be detailed)
cores allocated to the solver
size of the output (solvers can be very, very verbose!)
...

collect some information on what happened during the run
know at what time a solver printed a line
interrupt the solver in a nice way, so that it’s still able to
provide useful information (e.g. an approximate answer)
...
and all this should come for free!

runsolver is designed to fulfill these requirements, except the
last one

Controlling a Solver Execution: the runsolver Tool 3



Different times

WC: wall clock time = real time that elapses between the start
and the end of a computing task.

CPU: CPU time = time during which instructions of the program
are executed by a processing unit.

Some remarks:
On a host with 1 processing unit and no interrupts, CPU
time=WC time
On a host with 1 processing unit and a time sharing
system, WC time ≥ CPU time
On a host with n processing units, and for a perfect parallel
program, CPU time=n× WC time
WC time= user’s perception of the program efficiency
CPU time= actual computational effort

Controlling a Solver Execution: the runsolver Tool 4



Different memories

RSS (Resident Size) amount of RAM occupied by the program
VSIZE (Virtual Size) amount of memory (RAM or swap space)

occupied by the program

Some remarks:
RSS is under the operating system control and can change
arbitrarily during the solver execution. Not a candidate for
enforcing a limit.
VSIZE is under the program control (sum of
program/library code + static data + dynamic memory
allocations)
VSIZE is the parameter to limit to prevent a solver from
swapping

Controlling a Solver Execution: the runsolver Tool 5



Swapping to disk

Until we have solvers which are able to handle swap space in a
clever way, it’s a good idea to prevent the solver from swapping:

magnetic disks are approximately 6 order of magnitude
slower than main memory: the solver performances would
be dominated by the disk performances
too frequent swapping might kill the hardware
As an example, due to a configuration error, one solver
was actually allowed to swap in the competition. The host
became unresponsive (no way to login) and kept swapping
for 27 hours. Neither runsolver, nor torque (the batch
system) were able to kill the job (were not even executed)!

This policy should be revised once we have swap space on
SSD devices.

Controlling a Solver Execution: the runsolver Tool 6



Straightforward approach

(limit cputime 1200 ;
limit vmemoryuse 1G ;
time solver instance.cnf)

Easy approach for enforcing limits (except on WC time)
Doesn’t satisfy all our requirements (collecting information
about the running solver for example)
May print that the solver used 1 second CPU time and a
total of 1200 seconds WC time!!
May allow a solver with multiple processes to use much
more than 1200 s CPU time!!

Controlling a Solver Execution: the runsolver Tool 7



The source of the problem

The CPU time of a process only includes the “resources
used by those of its children that have terminated and have
been waited for” (man 2 times).
Consequence 1: if a parent process doesn’t call wait(2),
the resources used by the child will be forgotten.
Consequence 2: ulimit/limit(1) cannot enforce reliable
limits for multi-process solvers because the resources
used by the child are only reported when it terminates (too
late to enforce a limit!).

Controlling a Solver Execution: the runsolver Tool 8



First attempt (2005)

The idea:
intercept memory allocation requests, in order to be able to
gracefully terminate the solver when it requests too much
memory
intercept process creation calls to maintain a list of the
solver processes

Additional requirements:
must also work for static binaries
must not require any privilege

Solution:
run the solver in trace mode to intercept system calls

Works, but severely degrades the solver performances!

Controlling a Solver Execution: the runsolver Tool 9



Current solution (2006–today)

Idea:
periodically scan the list of processes to identify new
children of the solver (once per second)
periodically scan the list of the solver processes to update
their CPU usage (cheaper, ten times per second)

Advantages/Disavantages:
works well
low (but non nul) impact on the solver performances
used in the PB/SAT competitions since 2006 as well as
other competitions (ASP, MISC,...).
cannot terminate the solver gracefully if it allocates too
much memory in one call

Controlling a Solver Execution: the runsolver Tool 10



Additional features

timestamp each line printed by the solver (very useful)
periodically save a list of the solver processes with the
corresponding data from /proc (very useful for post
analysis)
limit the size of the solver output
allocate a subset of the available cores to the solver
and a few other options

Controlling a Solver Execution: the runsolver Tool 11



Impact on the solver (1)

In a perfect world (∼30 years ago)

Execution unit

Memory

Solver instructions

Solver data

Controlling a Solver Execution: the runsolver Tool 12



Impact on the solver (2)

In a perfect modern world

Execution unit

Memory
Solver data

Solver instructions

core 1 core 2

L1 L1

L2

main

Controlling a Solver Execution: the runsolver Tool 13



Impact on the solver (3)

In a real world, under the control of runsolver
Execution unit

Memory
Solver data

Solver instructions

core 1

L1 L1

L2

main

core 2

R/K

R/K

R/K

K

K

K

runsolver, the kernel and the other processes running on the
host are stealing CPU power and cache memory to the
solver!

Controlling a Solver Execution: the runsolver Tool 14



Impact on the solver (4)

Any software tool will have an impact on the solver!
runsolver attaches itself to the last core to limit its impact
The competitions are a nice test-bed for runsolver:

the CPU time used by runsolver is low (∼30 seconds CPU
time for a run of 5000 s, less than 1 %)
for sequential solvers, generally CPU time is equal to WC
time (almost)
for parallel solvers, evaluating the impact of runsolver is
difficult because of the non-determinism of the solver and
the sequential parts of the solvers (CPU/WC < number of
CPU). Some parallel solvers in the competition achieved a
ratio CPU/WC of 7.98 on a host with 8 cores, so the impact
of runsolver is probably around 1%.

Controlling a Solver Execution: the runsolver Tool 15



Conclusion

runsolver offers a number of interesting features to control
a solver
It benefits from the experience gathered during various
competitions
runsolver is not perfect, but is just a pragmatic answer to
the problem
There is necessarily an interaction between the solver and
runsolver (measuring modifies the experiment!) but the
perturbation is limited (depends on the hardware and the
solver).
The balance benefits/disadvantages is positive (IMHO)
Available under a GPL license at
http://www.cril.univ-artois.fr/∼roussel/runsolver
The latest version used during this year competitions will
be available soon.

Controlling a Solver Execution: the runsolver Tool 16


